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Text-to-SQL: Bridges Humans and Databases
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Who are the three youngest 
winners across all matches? 

And their ranks?

Users NL Query

Text-to-SQL  Model

SELECT winner_name, winner_rank FROM 
matches ORDER BY winner_age LIMIT 3

SQL

DB 
Information



Where Are We?

5https://github.com/HKUSTDial/NL2SQL_Handbook
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Where Are We?
• CHASE-SQL [ICLR 2025], by Google Cloud and Stanford

• Utilizes the MinHash LSH to search for values related to the user query 
• Multiple prompting strategies to generate various candidate SQL queries using LLMs, 

and corrects SQL queries with execution errors through prompting LLMs.
• Employs an SQL selection agent fine-tuned specifically for the database to select the 

final SQL from multiple candidates.
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Closed-source
 LLMs



Where Are We?
• CHASE-SQL [ICLR 2025], by Google Cloud and Stanford
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Key Limitations:
• Reliance on closed-source large models

• High cost (0.6 USD/query), making it difficult to widely deploy in real-world industrial scenarios.

• SQL selection agent requires fine-tuning
• The Google team fine-tuned the Gemini-1.5-Flash model specifically.
• Limited flexibility due to reliance on domain-specific data.

• Predefined and Fixed Reasoning Workflows

Closed-source
 LLMs



Where Are We?
• XiYan-SQL, by Alibaba

• M-Schema: Uses column and value retrieval to select relevant schema items from DBs.
• Fine-tunes a base LLM on SQL-specific data, then creates multiple specialized SQL-

generation models by fine-tuning with diverse Text-to-SQL syntax datasets. 
• Employs a fine-tuned SQL selection model to choose the best SQL from predictions 

made by multiple generators.
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Open-source LLMs



Where Are We?
• XiYan-SQL, by Alibaba
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Open-source LLMs

Key Limitations:
• High dependency on extensive domain-specific data.
• Significant costs associated with fine-tuning multiple models.
• Difficulty in rapid adaptation and generalization across varied scenarios.
• Predefined and Fixed Reasoning Workflows.



Key Takeaways
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• Closed-source LLMs for Text-to-SQL:
• High inference API cost limits practical deployments.
• Potential data privacy concerns for sensitive applications.

• Open-source LLMs for Text-to-SQL:
• Dependence on extensive domain-specific data for model fine-tuning.
• Limited generalization capability across different use cases.

• Common Limitations in Existing Solutions:
• Predefined and fixed reasoning workflows restrict adaptability.
• Domain adaptation and generalization across DB and text queries 



Where Are We Going?
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High Inference API Cost

Challenges Key Idea

Open-source LLMs🔒 ⚙

Lower deployment cost and improved flexibility

Expensive fine-tuning Training-free Paradigm🔧 🚀

Zero-shot reasoning without additional tuning

Fixed Reasoning Dynamic Reasoning 🔄📌 
Adaptive reasoning workflows guided by task 

Reasoning Agents
based on 

Open-source LLMs

Our Goal

We need a new perspective that reduces deployment cost, improves flexibility, and 
introduces a more adaptive reasoning mechanism



What is the (Reasoning) Agent?
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Alpha-SQL: 
A Plug-and-Play Text-to-SQL Reasoning Framework
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Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025. 

https://alpha-sql-hkust.github.io/

Open-source 
LLMs

Training-free 
Paradigm

Dynamic 
Reasoning
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Find the number of dog pets that are raised by female studentFind the number of dog pets that are raised by student

Step-1 NL Understanding

Step-2 Schema Linking and Database Content Retrieval

Pets

PetID PetType PetAge ...

Dog

Step-3 & 4 Design SQL Logic & Compose SQL

Student

StuID Sex Age ...

F

Has_Pet

PetID StuID ...

Select count(*) FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid=T2.stuid 
JOIN pets AS T3 ON T2.petid=T3.petid WHERE T1.sex=‘F’ AND T3.pettype=‘Dog’
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NL2SQL Human Workflow



Task Formulation: Mimic Human Experts

• From Human Actions to Agent Actions 

Understand 
Intent 

Link to 
Schema

Design SQL 
Logic Compose SQL Test

Yes
Q

DB
SQL

No

Understand Intent Question Rephrasing
👷 🤖

Link to Schema

(Revise, clarify ambiguities, rephrasing)

Schema Selection
Cell Value Selection

Design SQL Logic Column Function 

SQL Generation

SQL Revision

Compose SQL

Validate & Iter.

(decides which tables / columns / values)

(joins, aggregations, functions)

(assemble an initial executable query)

(iteratively test, debug, and optimize the query)



Task Formulation: Mimic Human Experts
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Tree-based Search:
• Each edge corresponds to an agentic action 

in the query construction process,
• Each node represents a reasoning state at a 

specific step, and
• Each path corresponds to a sequence of SQL 

construction actions for Text-to-SQL task.

Understand 
Intent 

Link to 
Schema

Design SQL 
Logic Compose SQL Test

Yes
Q

DB
SQL

No

• From the Fixed Action to Dynamic Actions
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Text-to-SQL as a Tree-based Search Problem

𝑞 = “What’s the rank of Bob in the 
football match?”
𝐷 = “CREATE TABLE `players` (…)”

Column Value Thinking:
In the above question, there is a specific 
filter about match type and player name. 
So I need use `player`.`name` = ‘Bob’ and 
`match`.`match_type` = ‘football’.

𝑎!: Column Value
Identification

𝑎": Column Function
Identification

𝑎#: SQL Generation

Column Function Thinking: …

SQL Generation Thinking:
Based on my previous thoughts, I need a 
WHERE clause to filter the match type 
and player, and there is no functions 
needed. Thus, the final SQL query is:
SELECT T1.rank FROM players AS T1 
JOIN matches AS T2 ON T1.id = 
T2.player_id WHERE T1.name = ‘Bob’ 
AND T2.match_type = ‘football’;

𝒗𝟎

𝒗𝟏

𝒗𝟐

𝒗𝟑

Edges (Actions) Nodes (Reasoning States)

LLM-as-Action-Model

𝑎(: Termination
𝒗𝟒

Input

Output

Question Database

Question Database Previous
Actions

Action LLM Next State

𝑎* 𝑣!"#

LLM-as-Action-Model

Rephrase Question

Schema Selection

Column Value Identification

Column Function Identification

SQL Generation

SQL Revision

Termination

𝑎+

𝑎,

𝑎!

𝑎"

𝑎#

𝑎-

𝑎(

Action Space



LLM-as-Action-Model
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Question Database Previous
Actions

Action LLM Next State

𝑎* 𝑣!"#



• Q1: How to select the next action (edge)?

• Q2: How to effectively navigate the vast search space?

• Q3: How to evaluate the quality of the candidate SQL queries?

Text-to-SQL as a Tree-based Search Problem

Q1 & Q2 • Monte Carlo Tree Search (MCTS) addresses this by balancing 
exploration (testing uncertain actions) and exploitation
(choosing actions likely to yield good results)

Q3 • We need a self-supervised reward function since our goal is to avoid 
reliance on labeled data

• Resampling the LLMs M times to compute the self-consistent scores



Alpha-SQL Solution Overview
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Pruning the Candidate Actions 
(for efficiency)

Action Ordering and Constraints
• Each reasoning trajectory follows a structured, ordered sequence to ensure logical consistency.
• Certain actions (e.g., SQL Revision) can only be performed after specific preceding actions.
• Each action can occur only once within a single reasoning path, preventing infinite loops.
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Pruning the Search Paths (for efficiency)
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• Alpha-SQL incorporates schema constraints and semantic 
rules into the search process to prune invalid paths early.
• A key aspect of our pruning strategy is the elimination of 

redundant nodes. For example, when performing a Schema 
Selection action, we may sample the LLM M multiple times (e.g., 
3 times). Although the Chain-of-Thought content generated by 
M may differ in each sample, if the final selected schema subset 
is identical, we create only one child node instead of three 
duplicate nodes. This de-duplication significantly reduces the 
branching factor of the search tree without loss of information.



Offline: Database Value Retrieval

• The databases value are extracted and processed offline.
• First, we extract keywords from questions using few-shot 

LLM prompts.
• We then use LSH to retrieve relevant values, filtering 

them based on editing similarity and semantic similarity 
thresholds (ϵedit , ϵsemantic ). 

• The semantic matching employs OpenAI’s text-
embedding-3-large model. The retrieved values will be 
used as part of the database schema prompt for our
LLM-as-Action-Model module.
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Alpha-SQL: Effectiveness 

24*模型名称后的“-7B”意味着模型约有70亿参数量。



Alpha-SQL: Plug-and-Play Capabilities
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Performance-Scale Trade-off Analysis
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Research Opportunities
• Human-as-an-Agent and Human-in-the-Reasoning-Loop

• How can we dynamically integrate human experts into the reasoning loop to address complex tasks 
beyond LLM agents‘ current capabilities and clarify the question ambiguities?

• Explainable and Interpretable SQL Reasoning Agents
• Users typically require explanations for the reasoning steps and decisions underlying SQL generation 

(i.e., knowing both "what" and "why").
• How can we design reasoning agents that transparently communicate their thought processes, 

decisions, and final SQL statements to improve system transparency and foster user trust?

• Metadata Management and Schema Interpretation
• Real-world databases commonly feature complex schemas, detailed metadata (e.g., column 

annotations, table descriptions, foreign key constraints, data types).
• How can we enable data agents to effectively extract, manage, and utilize this metadata to generate 

more accurate semantic mappings, informed reasoning processes, and precise SQL generation?
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Data-centric AI

LLMs & Agents

Agents-powered Data Analytics  

1. OpenManus: An open-source framework for building general AI agents

2. From LLM Agents to Foundation Agents 

Iterative Data Selection 
for LLM Instruction Tuning

GoodCore: Data-effective and Data-efficient 
Machine Learning
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[ICLR 2025, Oral Paper, Top-1.8%]

[TODS 2025, VLDB 2022]

[LineNet, SIGMOD 2023]
[HAIChart, VLDB 2024]
[LakeFill, VLDB 2025]
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Alpha-SQL: Upper Bound Accuracy
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Alpha-SQL: Top-K Accuracy
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Methods Base LLMs Top-K Accuracy

Alpha-SQL Qwen2.5-Coder-32B Top-1 69.7%

Alpha-SQL Qwen2.5-Coder-32B Top-2 78.4%

Alpha-SQL Qwen2.5-Coder-32B Top-3 80.8%

Alpha-SQL Qwen2.5-Coder-32B Top-4 81.6%

Alpha-SQL Qwen2.5-Coder-32B Top-5 81.7%


