
Interactively Discovering and Ranking Desired
Tuples without Writing SQLQueries

Xuedi Qin1, Chengliang Chai1, Yuyu Luo1, Nan Tang2, Guoliang Li1
1Department of Computer Science, Tsinghua University 2QCRI, HBKU

{qxd17@mails., chaicl15@mails., luoyy18@mails., liguoliang@}tsinghua.edu.cn, ntang@hbku.edu.qa

ABSTRACT
The very first step of many data analytics is to find and
(possibly) rank desired tuples, typically through writing SQL
queries – this is feasible only for data experts who can write
SQL queries and know the data very well. Unfortunately, in
practice, the queries might be complicated (for example, “find
and rank good off-road cars based on a combination of Price,
Make, Model, Age, Mileage, and so on” is complicated because
it contains many if-then-else, and, or and not logic) such that
even data experts cannot precisely specify SQL queries; and
the data might be unknown, which is common in data dis-
covery that one tries to discover desired data from a data
lake. Naturally, a system that can help users to discover and
rank desired tuples without writing SQL queries is needed.
We propose to demonstrate such as a system, namely DEx-
Plorer. To use DExPlorer for data exploration, the user
only needs to interactively perform two simple operations
over a set of system provided tuples: (1) annotate which tu-
ples are desired (i.e., true labels) or not (i.e., false labels), and
(2) annotate whether a tuple is more preferred than another
one (i.e., partial orders or ranked lists). We will show that
DExPlorer can find user’s desired tuples and rank them in
a few interactions, even for complicated queries.

ACM Reference Format:
Xuedi Qin1, Chengliang Chai1, Yuyu Luo1, Nan Tang2, Guoliang Li1
. 2020. Interactively Discovering and Ranking Desired Tuples with-
out Writing SQL Queries. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD’20), June
14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3318464.3384695

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384695

1 INTRODUCTION
This paper aims to help user discover a set of desired and
ranked tuples through interactive exploration, when precise
SQL queries are hard to specify. Informally speaking, given a
relational tableT , the user wants to find the answerR = Q (T)
of an unknown SQL query Q , where the term “unknown”
either means that the query is too hard to specify, or the data
is unknown to the user. Let’s illustrate through an example
why specifying such SQL queries is hard.

Example 1.1. Suppose a user wants a new manual petrol
car that is produced after year 2010, not provided by com-
mercial sellers, and its brand can be either BMW with price
≤ 10000, or Volkswagen with price ≤ 8000. Moreover, assume
that she wants all cars to be ranked by a weighted sum func-
tion: −0.018 × price + 0.982 × powerPS (note: she does not
know this function). That is, the ground truth query can be
expressed as Q1 below:

SELECT *

FROM Car

WHERE seller != "commercial" AND year ≥ 2010

AND gearbox="manually" AND fuelType="petrol"

AND ((brand = "bmw" AND price ≤ 10000) OR
(brand = "volkswagen" AND price ≤ 8000))

ORDER BY -0.018 ∗ price + 0.982 ∗ powerPS DESC;

Q1

Clearly,Q1 is hard to specify, because: (i) there are compli-
cated predicates in the WHERE clause, including and, or, not
and range selection; and (ii) it is hard to provide the weighted
sum function in the ORDER BY clause.
Prior Art. (1) Keyword search [5] allows the user to retrieve
some desired tuples by providing some keywords. However,
it is hard to capture complex SQL queries which may contain
if-then-else, and, or and not logic by under-specified key-
words. (2) Query-by-example [1] aims to infer user’s desired
tuples by user provided examples, either desired or not de-
sired. (3) Partial orders for tuple ranking [10] ranks tuples
based on user provided partial orders for tuple pairs.
(1) and (2) only discover desired tuples (denoted by de-

cision problem), and (3) focuses on ranking all tuples (de-
noted by ranking problem). There are also methods that
∗Guoliang Li is the corresponding author.

https://doi.org/10.1145/3318464.3384695
https://doi.org/10.1145/3318464.3384695

DExPlorer

private 102t6 bmwpetrol 450manually1997

88t5 private 2012 manually 1100petrol mazda

volkswagenmanually 487privatet4 2017 petrol 300

593privatet3 2017 petrol bmw 326manually

private volkswagent2 2017 500petrol 4500manually

volkswagen2017 1700privatet1 9010manually petrol

brandyear pricesellerId
power

PSgearbox fuelType

manually petrol

Operations

✅❎ ⬇⬆✅❎ ⬇⬆✅❎ ⬇⬆✅❎ ⬇⬆✅❎ ⬇⬆✅❎ ⬇⬆

User Feedback Selected
Tuples

User Feedback

✅

or

❎

Labels

⬇

or

⬆

Labels

Iteratively Training Models

Random Forest

➔

Ranking SVMLamdaMART

Training

Answer Inference

Decision
Problem

Ranking
Problem

Question Selection
Bi-criteria Optimization

Uncertainty Diversity

Predicting

D<latexit sha1_base64="fDHttTMaFZeY9ysmjKPR9bRi4oU=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFnUhTsr2Ae2RSbptA3Ni8lEKLVu/QG3+lviH+hfeGdMQS2iE5KcOfeeM3PvdWLfS6RlveaMufmFxaX8cmFldW19o7i5VU+iVLi85kZ+JJoOS7jvhbwmPenzZiw4CxyfN5zhqYo3brlIvCi8kqOYdwLWD72e5zJJ1HU7YHLgOOOzyU2xZJUtvcxZYGeghGxVo+IL2ugigosUAThCSMI+GBJ6WrBhISaugzFxgpCn4xwTFEibUhanDEbskL592rUyNqS98ky02qVTfHoFKU3skSaiPEFYnWbqeKqdFfub91h7qruN6O9kXgGxEgNi/9JNM/+rU7VI9HCsa/Coplgzqjo3c0l1V9TNzS9VSXKIiVO4S3FB2NXKaZ9NrUl07aq3TMffdKZi1d7NclO8q1vSgO2f45wF9YOybZXty8NS5SQbdR472MU+zfMIFZyjihp5h3jEE56NCyM17oz7z1Qjl2m28W0ZDx9C7ZNl</latexit><latexit sha1_base64="fDHttTMaFZeY9ysmjKPR9bRi4oU=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFnUhTsr2Ae2RSbptA3Ni8lEKLVu/QG3+lviH+hfeGdMQS2iE5KcOfeeM3PvdWLfS6RlveaMufmFxaX8cmFldW19o7i5VU+iVLi85kZ+JJoOS7jvhbwmPenzZiw4CxyfN5zhqYo3brlIvCi8kqOYdwLWD72e5zJJ1HU7YHLgOOOzyU2xZJUtvcxZYGeghGxVo+IL2ugigosUAThCSMI+GBJ6WrBhISaugzFxgpCn4xwTFEibUhanDEbskL592rUyNqS98ky02qVTfHoFKU3skSaiPEFYnWbqeKqdFfub91h7qruN6O9kXgGxEgNi/9JNM/+rU7VI9HCsa/Coplgzqjo3c0l1V9TNzS9VSXKIiVO4S3FB2NXKaZ9NrUl07aq3TMffdKZi1d7NclO8q1vSgO2f45wF9YOybZXty8NS5SQbdR472MU+zfMIFZyjihp5h3jEE56NCyM17oz7z1Qjl2m28W0ZDx9C7ZNl</latexit><latexit sha1_base64="fDHttTMaFZeY9ysmjKPR9bRi4oU=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFnUhTsr2Ae2RSbptA3Ni8lEKLVu/QG3+lviH+hfeGdMQS2iE5KcOfeeM3PvdWLfS6RlveaMufmFxaX8cmFldW19o7i5VU+iVLi85kZ+JJoOS7jvhbwmPenzZiw4CxyfN5zhqYo3brlIvCi8kqOYdwLWD72e5zJJ1HU7YHLgOOOzyU2xZJUtvcxZYGeghGxVo+IL2ugigosUAThCSMI+GBJ6WrBhISaugzFxgpCn4xwTFEibUhanDEbskL592rUyNqS98ky02qVTfHoFKU3skSaiPEFYnWbqeKqdFfub91h7qruN6O9kXgGxEgNi/9JNM/+rU7VI9HCsa/Coplgzqjo3c0l1V9TNzS9VSXKIiVO4S3FB2NXKaZ9NrUl07aq3TMffdKZi1d7NclO8q1vSgO2f45wF9YOybZXty8NS5SQbdR472MU+zfMIFZyjihp5h3jEE56NCyM17oz7z1Qjl2m28W0ZDx9C7ZNl</latexit><latexit sha1_base64="fDHttTMaFZeY9ysmjKPR9bRi4oU=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFnUhTsr2Ae2RSbptA3Ni8lEKLVu/QG3+lviH+hfeGdMQS2iE5KcOfeeM3PvdWLfS6RlveaMufmFxaX8cmFldW19o7i5VU+iVLi85kZ+JJoOS7jvhbwmPenzZiw4CxyfN5zhqYo3brlIvCi8kqOYdwLWD72e5zJJ1HU7YHLgOOOzyU2xZJUtvcxZYGeghGxVo+IL2ugigosUAThCSMI+GBJ6WrBhISaugzFxgpCn4xwTFEibUhanDEbskL592rUyNqS98ky02qVTfHoFKU3skSaiPEFYnWbqeKqdFfub91h7qruN6O9kXgGxEgNi/9JNM/+rU7VI9HCsa/Coplgzqjo3c0l1V9TNzS9VSXKIiVO4S3FB2NXKaZ9NrUl07aq3TMffdKZi1d7NclO8q1vSgO2f45wF9YOybZXty8NS5SQbdR472MU+zfMIFZyjihp5h3jEE56NCyM17oz7z1Qjl2m28W0ZDx9C7ZNl</latexit> R<latexit sha1_base64="pcmCd/gdIMJak8aqhZy7WhRe1xk=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFl0484q9oFtkWQ6bYfmRTIRSq1bf8Ct/pb4B/oX3hlTUIvohCRnzr3nzNx73cgTibSs15wxN7+wuJRfLqysrq1vFDe36kmYxozXWOiFcdN1Eu6JgNekkB5vRjF3fNfjDXd4quKNWx4nIgyu5CjiHd/pB6InmCOJum77jhy47vhyclMsWWVLL3MW2BkoIVvVsPiCNroIwZDCB0cASdiDg4SeFmxYiIjrYExcTEjoOMcEBdKmlMUpwyF2SN8+7VoZG9BeeSZazegUj96YlCb2SBNSXkxYnWbqeKqdFfub91h7qruN6O9mXj6xEgNi/9JNM/+rU7VI9HCsaxBUU6QZVR3LXFLdFXVz80tVkhwi4hTuUjwmzLRy2mdTaxJdu+qto+NvOlOxas+y3BTv6pY0YPvnOGdB/aBsW2X74rBUOclGnccOdrFP8zxCBWeookbeAR7xhGfj3EiNO+P+M9XIZZptfFvGwwdkO5Nz</latexit><latexit sha1_base64="pcmCd/gdIMJak8aqhZy7WhRe1xk=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFl0484q9oFtkWQ6bYfmRTIRSq1bf8Ct/pb4B/oX3hlTUIvohCRnzr3nzNx73cgTibSs15wxN7+wuJRfLqysrq1vFDe36kmYxozXWOiFcdN1Eu6JgNekkB5vRjF3fNfjDXd4quKNWx4nIgyu5CjiHd/pB6InmCOJum77jhy47vhyclMsWWVLL3MW2BkoIVvVsPiCNroIwZDCB0cASdiDg4SeFmxYiIjrYExcTEjoOMcEBdKmlMUpwyF2SN8+7VoZG9BeeSZazegUj96YlCb2SBNSXkxYnWbqeKqdFfub91h7qruN6O9mXj6xEgNi/9JNM/+rU7VI9HCsaxBUU6QZVR3LXFLdFXVz80tVkhwi4hTuUjwmzLRy2mdTaxJdu+qto+NvOlOxas+y3BTv6pY0YPvnOGdB/aBsW2X74rBUOclGnccOdrFP8zxCBWeookbeAR7xhGfj3EiNO+P+M9XIZZptfFvGwwdkO5Nz</latexit><latexit sha1_base64="pcmCd/gdIMJak8aqhZy7WhRe1xk=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFl0484q9oFtkWQ6bYfmRTIRSq1bf8Ct/pb4B/oX3hlTUIvohCRnzr3nzNx73cgTibSs15wxN7+wuJRfLqysrq1vFDe36kmYxozXWOiFcdN1Eu6JgNekkB5vRjF3fNfjDXd4quKNWx4nIgyu5CjiHd/pB6InmCOJum77jhy47vhyclMsWWVLL3MW2BkoIVvVsPiCNroIwZDCB0cASdiDg4SeFmxYiIjrYExcTEjoOMcEBdKmlMUpwyF2SN8+7VoZG9BeeSZazegUj96YlCb2SBNSXkxYnWbqeKqdFfub91h7qruN6O9mXj6xEgNi/9JNM/+rU7VI9HCsaxBUU6QZVR3LXFLdFXVz80tVkhwi4hTuUjwmzLRy2mdTaxJdu+qto+NvOlOxas+y3BTv6pY0YPvnOGdB/aBsW2X74rBUOclGnccOdrFP8zxCBWeookbeAR7xhGfj3EiNO+P+M9XIZZptfFvGwwdkO5Nz</latexit><latexit sha1_base64="pcmCd/gdIMJak8aqhZy7WhRe1xk=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFl0484q9oFtkWQ6bYfmRTIRSq1bf8Ct/pb4B/oX3hlTUIvohCRnzr3nzNx73cgTibSs15wxN7+wuJRfLqysrq1vFDe36kmYxozXWOiFcdN1Eu6JgNekkB5vRjF3fNfjDXd4quKNWx4nIgyu5CjiHd/pB6InmCOJum77jhy47vhyclMsWWVLL3MW2BkoIVvVsPiCNroIwZDCB0cASdiDg4SeFmxYiIjrYExcTEjoOMcEBdKmlMUpwyF2SN8+7VoZG9BeeSZazegUj96YlCb2SBNSXkxYnWbqeKqdFfub91h7qruN6O9mXj6xEgNi/9JNM/+rU7VI9HCsaxBUU6QZVR3LXFLdFXVz80tVkhwi4hTuUjwmzLRy2mdTaxJdu+qto+NvOlOxas+y3BTv6pY0YPvnOGdB/aBsW2X74rBUOclGnccOdrFP8zxCBWeookbeAR7xhGfj3EiNO+P+M9XIZZptfFvGwwdkO5Nz</latexit>

…

Figure 1: An overview of DExPlorer
find and rank tuples, such as SQLSynthesizer [11], but can
only support simple ranking functions. That is, no existing
work can support the complicated case in Example 1.1.
Challenges. Building a system for inferring complicated
query intent faces several design choices and research chal-
lenges. (C1) [User Interface.] What operations shall we pro-
vide to the users? (C2) [SQL Queries vs. Machine Learning
Models.] For the back-end inference, based on the user feed-
back, shall we reason about SQL queries or train ML models?
(C3) [Question Selection.] One key challenge is to reduce
human cost, such that the back-end engine can quickly con-
verge, which requires algorithms to proactively select the
most beneficial tuples for user feedback.
Outline. Section 2 overviews our proposed system, mainly
to address (C1), from a design perspective. Section 3 demon-
strates DExPlorer using real-world datasets with two main
goals: (G1) Easy-to-use: any user can operate on DExPlorer
with simple (click-based) operations; and (G2) Effectiveness:
DExPlorer can return good results in a few user interac-
tions. Section 4 gives details of the back-end, mainly for (C2)
and (C3), and compares with state-of-the-art solutions.

2 AN OVERVIEW OF DEXPLORER
Figure 1 gives an overview of DExPlorer.
Front-end. It will interact with the user in multiple itera-
tions until user budget is used up or the answer cannot be
improved. At each iteration, the system provides a question
I with k tuples, on which two operations are permissible: (1)
“click” to annotate a tuple to be either true or false; and (2)

“drag” to annotate that one is ranked higher than another.
The answers annotated by the user are then transformed to
a set D of true/false labels of tuples in I, and a set R of partial
orders between pairs of tuples in I.
Moreover, in order to address the cold-start problem, we

allow users to pose a few keyword queries to quickly get
some desired tuples.
Back-end. In the i-th iteration, the user will provide a set
Di of true/false labels and a set Ri of partial orders, the back-
end of DExPlorer needs to address two problems: answer
inference and question selection.
Answer Inference. Given the user feedback from all i itera-
tions, i.e., {D1,D2, . . . ,Di } and {R1,R2, . . . ,Ri }, it is to infer
the (ranked) result R.
Question Selection. It is to select a set Ii with k tuples for the
user to annotate in the i-th iteration.
Termination.The entire process will terminate, when the user
budget is used up, or the back-end inference will converge.
3 SYSTEM DEMONSTRATION
In this section, we demonstrate how DExPlorer works
(taking Q1 as a running example) on the car dataset (https:
//www.kaggle.com/orgesleka/used-cars-database).
(1) Keyword Search. To bootstrap DExPlorer, user can first
input keywords to help DExPlorer find her desired tuples.
For example, user can type “manually petrol” in the input
box in Figure 2(a) for Q1, then DExPlorer can select only
manually petrol cars for her to label.
(2) Labeling Tuples.When user inputs keywords,DExPlorer
selects tuples which are relevant to these keywords for her
to label; otherwise DExPlorer selects tuples by the question
selection algorithm in Section 4.2. The selected tuples are
shown to user as in Figure 2(a), then user can click the second
column to annotate a tuple to be either true or false, and
drag the first column of a tuple to adjust its rank. After
labeling tuples as shown in Figure 2(a), the user can click the
“Recommend” button, then DExPlorer infers user’s desired
tuples and ranks them by ML models in Section 4.1, and
shows the desired ranked tuples to user as in Figure 2(b).
(3) Look up Recommended Results. User can browse the de-
sired ranked tuples recommended by DExPlorer.
(4) Iterate the above Process. If user is not satisfied with cur-
rent recommended tuples, she can click the “Continue Tag-
ging” button, and DExPlorer will select new tuples for her
to label by the question selection algorithm in Section 4.2.
Or she can input new keywords (e.g., “bmw”) to refine the
SQL query. That is, she can iterate the above process until
she is satisfied with the recommended results. Then she can
download data for down-streaming applications, such as data
visualization [6–8].

https://www.kaggle.com/orgesleka/used-cars-database
https://www.kaggle.com/orgesleka/used-cars-database

(a) User Operations

(b) Recommended Results
Figure 2: Front-end of DExPlorer

Result Analysis. Figure 2(b) shows the top-10 recom-
mended ranked desired tuples onQ1 for user after 3 iterations
(i.e., 3 questions are answered, each question contains 10 tu-
ples), where the top-10 tuples all satisfy her hidden decision
intent and are well ranked by her ranking intent (i.e., Q1).
The accuracy of correctly ranked tuple pairs is higher than
0.8, and the precision@50 is 0.72 after 3 iterations, meaning
that 36 of real top-50 desired tuples are found in the predicted
top-50 tuples, which proves that DExPlorer can efficiently
find and rank the desired tuples in a few interactions.

4 BACK-END ALGORITHMS
4.1 Answer Inference

Decision Answer Inference. The decision problem is a
binary classification problem - deciding whether a tuple is
desired or not. There are several choices: decision tree (DT),
random forests (RF), or support vector machines (SVM). The
work [1] uses DT for decision problem. However, DT is
not ideal to capture complex predicates. Thus we use RF for
decision answer inference.
Ranking Answer Inference. DExPlorer assumes user’s
ranking intent can be expressed by a weighted sum function
f (t) = wt , which is a common assumption in many data
exploration systems [10]. Thus DExPlorer uses Ranking

SVM [4] to learn w . Besides, inspired by the GBDT + LR
model in many commercial IR systems [3], we develop a
hybrid ranking model: LambdaMART [9] + Ranking SVM.
The LambdaMART model outputs a transformed feature t⃗′′

for each tuple t⃗′, and t⃗ = t⃗′ ⊕ t⃗′′ is fed to Ranking SVM.

4.2 Question Selection
In each user iteration, we need to select a list of k tuples
from the table T as one question I. When selecting tuples,
we should consider about their uncertainty and diversity.

4.2.1 Uncertainty andDiversity. We should select tuples
which the ML models are uncertain about, and these selected
tuples should be as diversified as possible. Now, we define
the uncertainty and diversity of tuples.
Uncertainty for Decision Questions. We define the un-
certainty of a tuple t as the entropy of the predicted results
of all decision trees in the random forest.
Uncertainty for Ranking Questions. Given a pair of tu-
ples ti and tj , the Ranking SVM model learns a parameter
vector w⃗, and the model is uncertain about the tuple pairs
whose |w⃗ · t⃗i − w⃗ · t⃗j | are close to 0.
Diversity. Let v⃗′(t) be the predicting vector of all trees in RF
for tuple t , and let v⃗′′(t) be the transformed feature of tuple t

output by the LambdaMART model (i.e., v⃗′′(t) = t⃗′′). We use
v⃗(t) = v⃗′(t) ⊕ v⃗′′(t) to compute the diversity. We define the
similarity s of tuple ti and tj as: s (ti , tj) = cos (⃗v(ti), v⃗(tj)).
Definition 4.1 (Question Selection). Given a partially

trained RF model and hybrid ranking model, a tableT , and a
number k , the problem is to select a set of k tuples S∗ from
T such that the following equation is minimized:
S∗ = argmin

S ⊆T , |S |=k

∑
t ∈S

(1−u (t))+α
∑

ti ,tj ∈S
|w⃗·⃗ti−w⃗·⃗tj |+β

∑
ti ,tj ∈S

s (ti , tj)

(1)
where u (t) is the normalized uncertainty of tuple t , α is a
parameter to trade-off decision and ranking questions, w⃗ is
the weight vector output by the hybrid ranking model, β is a
parameter that provides a trade-off between the uncertainty
and diversity, and s (ti , tj) is the similarity of ti and tj .

4.2.2 Algorithms. Considering both uncertainty and di-
versity is hard due to it is NP-hard [2]. We thus propose to
first solve the question selection by only considering decision
and ranking uncertainty (i.e., β = 0), and then incorporate
the diversity into the solution obtained in the first step.
Question Selection without Diversity. We set β = 0 in
Eq. (1) to ignore diversity:

S∗ = argmin
S ⊆T , |S |=k

∑
t ∈S

(1 − u (t)) + α
∑

ti ,tj ∈S
|w⃗ · t⃗i − w⃗ · t⃗j | (2)

To better illustrate the optimization problem, we first de-
note S = [t1, t2, ..., tk], where w⃗ · t⃗i ≤ w⃗ · t⃗j iff i ≤ j , then we
expand the second term of Eq. 2 to Eq. 3. Thus we have:

S∗ = argmin
S ⊆T , |S |=k

k∑
i=1

(1 − u (ti)) + α
k∑
i=1

(
(i − 1)w⃗ · t⃗i − (k − i)w⃗ · t⃗i

)
= argmin
S ⊆T , |S |=k

k∑
i=1

(1 − u (ti)) + α
k∑
i=1

(2i − k − 1)w⃗ · t⃗i

(3)
We sort T by w⃗ · t⃗ in ascending order and obtain a sorted

list T = [t1, t2, ..., t |T |]. We use Tm to denote the prefix of list
T with lengthm, i.e.,Tm = [t1, t2, ..., tm]. We define S (m,n) =

argmin
S ⊆Tm, |S |=n

|S |∑
i=1

(1 − u (ti)) + α
|S |∑
i=1

(2i − k − 1)w⃗ · t⃗i and F (m,n)

denotes the corresponding optimal value. We can see that
S (|T |,k) is the optimal solution of Eq. 2 and F (|T |,k) is the
corresponding optimal value. Then we have:

F (m,n) = min(F (m − 1,n), F (m − 1,n − 1) + ϕ (m,n)) (4)

where ϕ (m,n) = (1 − u (tm)) + α (2n − k − 1)w⃗⃗tm . Thus we
devise a dynamic programming algorithm to find the optimal
solution for Eq. 2.
Question Selection with Diversity. When considering
both uncertainty and diversity, we optimally choose tuples
with high uncertainty by the above dynamic programming

Figure 3: Effectiveness

algorithm, but when adding a tuple t to the result set S , we
check whether t has a high similarity with existing selected
tuples. If yes, we just drop it; else, we include it to the result.

4.2.3 Comparison. We compare our method with state-of-
the-art solution for discovering and ranking desired tuples:
SQLSynthesizer [11]. Since SQLSynthesizer can only support
simple (hierarchical) ranking function, we also test another
SQL query Q2 by replacing the ORDER BY clause in Q1
with “ORDER BY year, -kilometer, -price, powerPS DESC”.
The accuracy of correctly ranked tuple pairs of Q1 and Q2
are shown in Figure 3(a) and Figure 3(b) respectively.
From Figure 3, we can know SQLSynthesizer only sup-

ports simple (hierarchical) ranking function (i.e., Q2), and
has a poor performance on complex ranking function (i.e.,
Q1), while DExPlorer supports both simple and complex
ranking functions well. Also, DExPlorer performs better
than SQLSynthesizer on Q2, which is due to RF can better
capture user’s complex query intents, and the effectiveness
of the question selection algorithm in DExPlorer.
Acknowledgement. This work was supported by NSF of
China (61925205, 61632016, 61521002), Huawei, and TAL
Education Group.

REFERENCES
[1] K. Dimitriadou and et al. Explore-by-example: An automatic query

steering framework for interactive data exploration. In SIGMOD, 2014.
[2] R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for

maximum dispersion. Operations research letters, 1997.
[3] X. He and et al. Practical lessons from predicting clicks on ads at

facebook. In ADKDD, pages 5:1–5:9, 2014.
[4] T. Joachims. Training linear svms in linear time. In SIGKDD, 2006.
[5] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword search

in relational databases. In SIGMOD, pages 563–574, 2006.
[6] Y. Luo, X. Qin, and et al. Steerable self-driving data visualizationn. In

IEEE TKDE, 2020.
[7] Y. Luo, X. Qin, N. Tang, and G. Li. Deepeye: Towards automatic data

visualization. In ICDE, pages 101–112, 2018.
[8] X. Qin, Y. Luo, N. Tang, and G. Li. Making data visualization more

efficient and effective: A survey. The VLDB Journal, 2019.
[9] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Adapting boosting for

information retrieval measures. Information Retrieval, 2010.
[10] M. Xie, T. Chen, and et al. Findyourfavorite: An interactive system for

finding the user’s favorite tuple in the database. In SIGMOD, 2019.
[11] S. Zhang and Y. Sun. Automatically synthesizing sql queries from

input-output examples. In ASE, pages 224–234, 2013.

	Abstract
	1 Introduction
	2 An Overview of DExPlorer
	3 System Demonstration
	4 Back-end Algorithms
	4.1 Answer Inference
	4.2 Question Selection

	References

