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Abstract—Machine learning (ML) has widespread applications and has revolutionized many industries, but suffers from several
challenges. First, sufficient high-quality training data is inevitable for producing a well-performed model, but the data is always human
expensive to acquire. Second, a large amount of training data and complicated model structures lead to the inefficiency of training and
inference. Third, given an ML task, one always needs to train lots of models, which are hard to manage in real applications. Fortunately,
database techniques can benefit ML by addressing the above three challenges. In this paper, we review existing studies from the
following three aspects along with the pipeline highly related to ML. (1) Data preparation (Pre-ML): it focuses on preparing high-quality
training data that can improve the performance of the ML model, where we review data discovery, data cleaning and data labeling.

(2) Model training & inference (In-ML): researchers in ML community focus on improving the model performance during training, while

in this survey we mainly study how to accelerate the entire training process, also including feature selection and model selection.
(3) Model management (Post-ML): in this part, we survey how to store, query, deploy and debug the models after training. Finally,

we provide research challenges and future directions.

Index Terms—Database, machine learning, data preparation, model training, model inference

1 INTRODUCTION

ACHINE learning (ML) is gaining much popularity due

to its power and mystery in terms of accuracy and
generalization ability, which has widespread applications,
e.g., image recognition [71], natural language process-
ing [56], [99], [102], [103], etc. In the ML community,
researchers mainly study how to design sophisticated
model structures for higher performance. However, people
always suffer from several challenges when they utilize ML
in real scenarios. First, ML models definitely need enough
high-quality training data. However, it is always prohibi-
tively expensive to hire experts to acquire or label sufficient
data, while relying on some other resources (e.g., web,
crowdsourcing, rules) may result in noisy data and this
data is likely to have a negative impact on ML tasks. Second,
a large number of training data naturally makes training
less efficient. Besides, many typical model structures are
becoming larger and deeper, especially for deep learning
models, which further exacerbates the problem of
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inefficiency. Third, model training is not a one-shot process,
and data scientists always train iteratively, test many mod-
els and select the most appropriate one, but these trained
models are hard to manage because they incorporate too
much information (e.g., parameters, model structures, per-
formance). Hence, how to manage these models and the cor-
responding data artifacts remains a challenge.

To address these challenges, an end-to-end data analy-
sis pipeline is proposed, where many DB techniques can
be utilized to benefit the effectiveness and efficiency of
ML tasks. We discuss relevant techniques from three
aspects along with the ML pipeline. First, before model
training (Pre-ML), data preparation is needed for prepar-
ing high quality training data, including data discovery,
cleaning and labeling. Second, model training (In-ML)
consists of a number of time-consuming steps including
feature selection, model selection as well as training and
inference, which can be accelerated using DB techniques
like materialization or parallelism. Third, DB-based
techniques can always be used to manage the trained
models (Post-ML), including model storage, query,
deployment and debugging. Thus the above steps have
been extensively studied recently, and we review them
thoroughly in this paper.

1.1 Pre-ML: Data Preparation

Data preparation is the act of manipulating raw data from
multiple data sources into a form that can be readily ana-
lyzed, e.g., feeding into an ML task. It is the first step in ML
tasks and accounts for 80% time of the entire data science
pipeline [2]. The quality of data preparation has a large
impact on the model performance. In this part, we discuss
three parts of modules along with the data preparation
pipeline, i.e., data discovery, data cleaning and data label-
ing respectively.
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Data Discovery aims to retrieve training data related to the
ML tasks from external resources, like the web, data ware-
house or data lake, which is the first step in data prepara-
tion. In this paper, we survey related works about data
discovery from two aspects at a high level. (1) On the one
hand, we review attribute/tuple-level data discovery [169],
[177], which takes a dataset as input, asks for fresh attrib-
utes or tuples from other resources and fills them into the
data set. The optimization goals are to achieve high accu-
racy (the fetched attributes/tuples belong to the domain of
the dataset), and low cost (less human cost or rechargeable
APIs). (2) On the other hand, we review table-level data dis-
covery [28], [75]. Given a base table as input, it aims to dis-
cover multiple tables from data warehouse or data lake that
can be joinable or unionable with the base table. The optimi-
zation goals are mainly to improve the ML performance
and the efficiency because of the time-consuming join oper-
ation. At a fine-grained level, we discuss whether these data
discovery methods directly benefit the downstream ML
task (ML-oriented) or not (Data-oriented), and focus on
introducing ML-oriented approaches.

Data Cleaning [55] focuses on cleaning the dirty data that
always happens in raw data collected from different resour-
ces. Common types of dirty data include missing values,
outliers, duplicates, inconsistency, etc. In the literature of
data cleaning, existing works always study how to detect
and repair dirty data, with the goal of cleaning the data as
much as possible. Recently, researchers have proposed to
clean for ML, i.e., purely cleaning the data that can directly
improve the model performance, which saves much clean-
ing costs while keeping high quality. In this paper, we sur-
vey different cleaning approaches (e.g., Active clean, Boost
clean, etc.) for ML [16], [64], [69], [70], [92], with diverse
dirty data types [97], [98] to be cleaned and different models
to be benefited.

Data Labeling aims to label the data for training. As we
know, a well-performed ML model needs high-quality
labels, which is as least as important as an appropriate ML
algorithm. In this paper, we discuss data labeling methods
from the following three aspects. (1) Crowdsourcing [82]
aims to leverage the intelligence of crowd workers to label
the data items that are hard for the computer. Thanks to the
crowdsourcing platforms like AMT [1], hundreds of thou-
sands of workers can be hired for labeling the data. The opti-
mization goals are workers’ cost (because workers are not
free), quality (workers are error-prone) and latency (workers
are slower than the computer). (2) Active learning [78], [150]
mainly relies on experts to label the data. The advantage is
that experts always have high quality, but they are expen-
sive. The challenging problem is how to select minimum
number of data items to label so that a well-performed model
can be derived. Many related approaches (uncertainty-
based, query by committee) will be surveyed. (3) Weak
supervision [62], [132], [134] builds connections between
weak labels and downstream ML tasks. Based on where the
weak labels come from, we classify weak supervision meth-
ods into three categories: a) Learn from the crowd, where the
labels come from crowd workers. b) Data programming, the
labels are derived from multiple rules designed by experts.
c) Fact extraction, the labels are retrieved from external
resources like knowledge.
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1.2 In-ML: Model Training and Inference

After preparing the data, we aim to feed the data for train-
ing and then inference. In the ML community, a number of
works [5], [45], [57] focus on accelerating this process,
including feature selection, model selection and the compu-
tation in training/inference. In the DB community, there
also exist some works focusing on this in a complimentary
perspective or different scenarios. For example, some of
them study how to implement ML algorithms inside the
database such that the data is not necessary to be loaded
outside the database, and thus the efficiency can be
improved and the security can also be guaranteed. To be
specific, we discuss the In-ML optimization in the DB com-
munity from following aspects.

Feature Selection is the first step of training, which selects an
optimal subset of features for training. In the ML community,
feature selection approaches are categorized into filtering-
based, wrapper-based and embedded-based approaches,
which will be briefly introduced in this paper. In the DB com-
munity, several techniques are proposed to accelerate the fea-
ture selection, especially the scenarios for relational data. (1)
Batching [79] means to load multiple feature subsets to
be tested into memory at once, so as to improve the I/O
efficiency. (2) Materialization [174] achieves acceleration
through storing some intermediate results in feature engi-
neering while iterative training. (3) Feature pruning [75] elim-
inates the features that are likely not to benefit the ML models
without training. (4) Active learning [6] based method aims to
select a subset of high-utility data items to train.

Model Selection [68], [84], [116], [118] aims to select the
most appropriate model (or model parameters) during
training, which significantly influences the model perfor-
mance. In ML community, model selection always conducts
the neural architecture search to select optimal hyper-
parameters or architectures. In DB community, parallelism
techniques are utilized to accelerate model selection. The
key idea of parallelism is to distribute the data/models to
multiple workers and aggregate the results to compute the
best model. Hence, the parallelism methods are complimen-
tary to the ML-based ones, and they can be applied together
to much accelerate the ML tasks.

Acceleration of Model Training & Inference. In the ML com-
munity, existing methods accelerate the model training/
inference from several aspects, such as hardware-based
acceleration [114], data-efficient approaches [111], [112] and
gradient computation optimization [60], [66]. In the DB com-
munity, we study this problem from a different perspective
where training data exists in multiple relational tables. The
training and inference processes incorporate a number of
complicated mathematical operations on one or more tables
for computing the gradient and thereby minimizing the loss,
so there exists large optimization potential for acceleration.
We category this part as follows. (1) Linear algebra optimiza-
tion [30], [53]. In ML, the training process always needs to
optimize a loss function, where many linear algebra (LA)
computations are involved. These computations are almost
time-consuming matrix operations, so it is necessary to opti-
mize them through a) In-database optimization converts the
LA operations to be executed in databases so that DB-based
acceleration methods can be utilized. b) Rule-based methods
can be used for optimizing the LA, like rewrite or fusion of
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LA operators. ¢) LA operations can also be transformed to
relation algebra, which has systematic optimization methods
in DB community. (2) Factorized ML [74], [144]. In real sce-
narios, training data is stored on multiple relational tables
and has to be joined when training, which leads to large
computational costs. Therefore, factorized ML is proposed to
push some computations to each single table for acceleration.
(3) Computation graph optimization [41], [59] is a higher
level optimization that focuses on optimizing the computa-
tional graph in deep learning through subgraph substitu-
tions, so as to improve the runtime performance of a tensor
graph. (4) Hardware acceleration [7], [152]. Modern hard-
ware, like FPGA, GPU, can be utilized to accelerate the train-
ing and inference process by parallelism.

1.3 Post-ML: Model Management

While developing an effective and robust ML model, devel-
opers usually carry out dozens of model architectures, tuning
their hyperparameters, and then checking the performance
by training and testing. Once the model is developed, the ML
practitioner will deploy the model and monitor its perfor-
mance. If there are some unexpected results detected in the
model monitoring phase, the developer may look back the
find the root causes. Not surprisingly, manually keeping and
tracking these models variants and associated data artifacts
are hard, error-prone, and not scalable. Model management
is responsible for storing, versioning, querying, deploying
and debugging the ML models (including their metadata)
effectively and efficiently.

Model Storage, Versioning and Query [110], [161] aim to
store, log, search, and analyze the model variants and their
metadata efficiently and effectively. Some works adapt col-
umn-store, compression, and indexing techniques to reduce
the storage cost and improve query efficiency. There is a
line of works that provide declarative query language or
visual interface to make the users storing and querying their
models and data easier.

Model Diagnosis [51], [160] is responsible for helping ML
developers to understand why a training process does not
achieve acceptable performance and assisting developers to
find reasons in models/data. Since the model diagnosis usu-
ally touches the model parameters and data artifacts pro-
duced in the model developing process, a large volume of
such data will cause two data management challenges: stor-
age and computation. Thus, several techniques are proposed
to reduce the storage cost such as de-duplication and quanti-
zation. Some works adopt the sampling, materialization, and
indexing approaches to reduce the computation cost (i.e.,
reduce the execution time of model diagnosis queries).

Model Deployment and Serving [32] refers to deploy models
in a production environment and serve models for predic-
tion with low latency. Model deployment should provide
developers with an easy-to-use infrastructure to deploy
models in the production environment seamlessly without
huge little effort. The key points of model serving are how to
support low latency and high throughput model prediction,
while guaranteeing the accuracy of prediction results.

ML Pipeline Debugging [170], [173] helps users to find the
root cause of unexpected results after deploying models.
Since the ML is the paradigm of “learning from data”, the
first step in ML pipeline debugging is data debugging. After
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Fig. 1. Overview of data management for ML.

double-checking the data, developers can move to model
debugging (or code debugging). In this part, we survey the
related works from the above two aspects.

1.4 Contributions
Comparisons With Existing Surveys. In this paper, we focus on
the DB techniques that can directly improve the efficiency as
well as effectiveness of ML models. Roh [138] studies data
collection techniques for machine learning, mainly focusing
on data preparation operations rather than the entire ML
pipeline including acceleration and model management.
Furthermore, our survey also emphasizes data management
techniques that can directly improve the model perfor-
mance. Kumar [12], [72] focuses on accelerating the model
training step rather than improving the effectiveness.
Besides, AutoML surveys [38], [52] review techniques in
ML community mainly from the model perspective rather
than the data.

To summarize, we make the following contributions (see
Fig. 1).

e Wereview Pre-ML techniques that utilize data prep-
aration approaches to prepare high-quality training
data with low cost, including data discovery, data
cleaning and data labeling (see Section 2).
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TABLE 1
Comparison of Data Discovery Methods

Category Target References Sources Model Semantic Aware
Data-oriented [15], [177], [186] Web — X
Attribute/Tuple level [39[11,6[;]2 1 g?cﬁ;aer;{ DKIE B ‘:
ML-oriented [147] Human ALL v
[33], [87], [88], [117] Training Data ALL v
Data-oriented [46], [47] Data Lake - X
[42], [43], [119], [187] Data Lake — v
Table-level ML-oriented [75] Data Warehouse NB, LR X
[151] Data Warehouse NB, LR, SVM, ANN X
[28] Data Lake ALL v

e We review In-ML techniques that utilize DB-based
methods to accelerate each part of ML, including fea-
ture selection, model selection, acceleration of train-
ing&inference (see Section 3.2).

o We review Post-ML(model management) techniques
including model storage & query, model diagnose,
deployment and pipeline debugging in Section 4.

e We provide research challenges and future direc-
tions in Section 5.

2 DATA PREPARATION

In this section, we survey how to prepare high-quality data
before ML, including data discovery, data cleaning and
data labeling.

2.1 Data Discovery

When a data scientist aims to build an ML model, she needs
sufficient data for training and testing. If there is no data
available, existing external data repositories(e.g., data lake,
web) provide opportunities for data scientists to search the
data. However, in real scenarios, usually only a small num-
ber of data is available, lacking attributes, tuples or features.
To address this, many researchers have studied to discover
more data for better model performance. In this subsection,
we category data discovery as attribute/tuple-level and
table-level discovery, as shown in Table 1.

Attribute/Tuple level. Infogether [177] leverages a vast cor-
pus of HTML tables on the web to fill the missing attributes
in the basic table T;. The basic idea is to first identify web
tables that match with T;. Here the “match” means that they
have the same type of entities and overlapping schemes.
Second, for each missing attribute in 7}, aggregate the corre-
sponding results from these matched tables and pick the
most likely one. Wang et al. propose SmartCrawl [169], a
novel method that discovers new attributes from external
data sources. It fetches data from a hidden database (e.g.,
deep web) through a keyword-based API. Similarly, some
other works [15], [39], [121], [177], [186] also study how to
discover attributes from external resources.

Although the aforementioned works [15], [121], [177] can
fetch tuples from external resources, their goal is just to
enrich the table rather than directly improving the model
performance. Active learning-based methods [147] find
tuples that have a large impact on the current model, but

the fetched tuples have to be labeled by humans, which will
be discussed in detail in Section 2.3.2. For image data, aug-
mentation operations, e.g., flip, rotate, scale, etc. are always
applied to enrich the training dataset for performance
improvement [33], [87], [88], [117]. For example, AutoAug-
ment [33] uses reinforcement learning to search a sequence
of optimal augmentation policies automatically. Specifi-
cally, each policy defines which operations to use and the
probability of applying the operations in each batch. The
agent first predicts a policy from the pre-defined search
space. Then a child network is trained to achieve certain
accuracy after applying the policy. Finally, the accuracy is
regarded as a reward to update the prediction strategy in
the first step.

Table Level. Goods [46], [47] is a table-level method, which
manages the data in the data lake and provides an interface
that allows users to explore the tables. Specifically, it stores
information like dataset scheme, similarity and provenance
between datasets. Users can search and browse datasets
using keywords. However, such systems have limited usage
in ML because they can not support to search related datasets
given a query dataset, which is a common requirement when
current data is not enough. To this end, Fernandez ef al. pro-
pose Aurum [42], which is a graph-based data discovery sys-
tem that provides flexible queries to search datasets based on
users’ requests, so that one can find candidate datasets to
join. The system consists of three parts. (1) Graph Building.
Aurum leverages enterprise knowledge graph (EKG) to cap-
ture a variety of relationships between datasets. The EKG is
a hypergraph where each node denotes a table column, each
edge represents the relationship between two nodes and
hyperedges connect nodes that are hierarchically related
such as columns in the same table. Based on EKG, they have
built the relationships between datasets in the data lake, and
thus one can query related datasets using a dataset. (2) Graph
Maintaining. Since data is always changing, keeping the
graph up-to-date is significant, but each time recomputing
the graph from scratch is expensive. Therefore, Aurum pro-
poses a sampling-based method to determine which dataset
has been changed efficiently, and then update that parts of
the graph. (3) Graph Query. Given EKG, Aurum allows users
to query it with property or relation constraints, such as que-
rying tables using keywords, querying similar tables or rank-
ing the results. The core part of EKG is whether the edges
capture the internal relationships between relational tables
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accurately, so Fernandez et al. [43] propose to use word
embeddings to capture the semantic relationships between
relational tables. Specifically, they encode the tables name,
column schemes, and map them onto an existing ontology.
Two tables corresponding to two nodes of an edge in an
ontology means that they have a close relationship.

Nargesian et al. [119] focus on searching tables from the
data lake that can be unionable with the base table. It first
defines the attribute unionability that measures whether
two attributes can be in the same domain, which considers
(1) Set domains: the co-occurrence of the same value in two
attributes. (2) Semantic domains: even if values in two attrib-
utes do not overlap, they can map to an ontology (e.g.,
attributes including cities, basketball players). (3) Natural
language domains : since existing ontologies cannot cover all
domains, word embeddings are incorporated to capture the
attribute unionability. Then given two tables S and T, if
there is a one-to-one alignment between subsets attributes
of S and T such that the aligned attributes are unionble, S
and T are unionble.

The above works focus on finding related tables that can
be joinable or unionable with the base table, rather than
improving the downstream model performance directly.
Next, we discuss table-level data discovery for ML directly.
Formally, given a base table 7;, (with a column Y for predic-
tion), a set of candidate tables 7 = {T}, T, ..., Tj7|} that can
be joined with 7}, and a model M. M can be applied on T}, or
augmented T;, by joining with tables in 7 and test the accu-
racy. The problem is to select an optimal subset of tables
7' C T and join all tables in 7' with T}, so as to improve the
model performance most.

Halmet [75] answers a question that whether key-foreign
key joins (KFK) between Tj, and tables in 7 are necessary
with the goal of improving the performance of M. If not,
some tables in 7 can be pruned in advance without joining
and training, so that the efficiency is improved. The basic
idea is that the foreign key in the base table has been
encoded enough information of candidate tables. For exam-
ple, suppose that the base table T} is Customers (Custom-
erID, Favor_type, Age, Gender, MovieID), and one
of the candidates is Movies (MovieID, Rating, Type),
so they can be joined through MovieID. Since many cus-
tomers might see the same movie, so it is reasonable to use
MovieID as a feature directly rather than joining the Mov-
ies table. Specifically, Halmet proposes a measurement
called Risk Of Representation (ROR) that leverages the Vap-
nik-Chervonenkis (VC) dimension to compute the differ-
ence of train and test error of M if the join is removed. The
higher the ROR is, the more necessary the join will be. Oth-
erwise, one may consider to drop the candidate table. How-
ever, this method is limited to models like Naive Bayes and
logistic regression, with VC dimension linear to the number
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of features. Therefore, Shah [151] proposes a framework
that can avoid unnecessary joins based on high-capacity
classifiers such as decision trees and SVMs.

ARDA [28] is an ML-oriented data augmentation frame-
work that discovers tables from data lake, so as to improve
the performance of the downstream ML model. More spe-
cifically, given a base table 7}, and a large number of tables
that can be joined with T, the most straightforward method
is to join all tables and then apply feature selection algo-
rithms on the join results. However, this method is too
expensive because the join operation is costly. What’s more,
adding many features is likely to introduce noise, leading to
the decline of model performance. Therefore, ARDA pro-
poses the following methods to address this, as shown in
Fig. 2. (1) Base table sampling: since T}, is required to be joined
multiple times, reducing its cardinality can be a way to
improve the efficiency. Therefore, ARDA samples some rep-
resentative tuples as a coreset using simple heuristics from
T, when its size is large and utilizes these samples to learn
the augmentation plan. (2) Step-by-step fuzzy join: ARDA fur-
ther improves the efficiency by joining 7; with candidate
tables step by step rather than joining all of them together.
First, it sorts the candidates based on their relevance to Tj,
which can be computed by [42]. Then it joins the table step
by step based on the ordering. In each step, ADRA feeds a
batch of tables to join with Tj considering the trade-off
between storage overhead and efficiency, conducts feature
selection, trains the model and tests the accuracy. When the
accuracy does not increase or a pre-defined budget of steps
has been achieved, the augmentation process terminates.
What's more, ARDA can handle fuzzy joins by soft keys. (3)
Random injection feature selection (RIFS): to verify the effec-
tiveness of newly added features, ARDA compares these
features against noise. If the features perform worse than
injected noise, they are likely to be useless.

2.2 Data Cleaning

In the real world, most of the data is dirty, which may result
in unreliable analysis and decisions made by the ML model.
Common types of dirty data include outliers, missing val-
ues, inconsistency, etc. Therefore, it is necessary to clean the
data. The pipeline of cleaning the data consists of error
detection and error repair (see [55] for a survey). Some
researchers use rule-based methods to detect and repair [40]
data errors, which are easy to implement, but have limited
accuracy and generality. Therefore, some works have stud-
ied to leverage humans (e.g., crowdsourcing or experts) and
external resources (e.g., knowledge bases) [29] to improve
the cleaning quality. However, humans are always expen-
sive, so some statistical techniques [135] are applied to clean
the data. Most data cleaning approaches mentioned above
mainly focus on cleaning the entire dataset. However, data
cleaning is task-dependent and different tasks may use dif-
ferent cleaning techniques to repair different parts of the
data. Next, we introduce some works that focus on cleaning
the data for downstream ML or data analysis tasks, which
are summarized as Table 2.

Given a dataset with dirty data and a model, Krishnan
et al. [70] observe that iteratively cleaning the dataset and
training on a partially cleaned dataset is likely to degrade
the model performance. One can also choose to clean the
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TABLE 2

Comparison of Data Cleaning Methods
Method Target Method Automatic Cleanning Type Model Type
ActiveClean [70] Model 1 Gradient estimation X Outlier, Normalization Loss convex model
BoostClean [69] Model 1 Boosting v Outlier All
CPclean [64] Model T Incompletion analysis 4 Missing values KNN
DAGAN [92] Model 1 GAN v Missing values ALL
SampleClean [165] AQP T Statistics X Outlier, Duplicates Aggregation queries

entire dataset using the above methods, but it is always
human expensive. To this end, Krishnan et al. [70] propose
ActiveClean to prioritize cleaning those dirty records that
have a large impact on the downstream model in iterations.
At a high level, the reason why dirty data degrades the per-
formance is that they mislead the gradient computation.
Then, if one can clean part of dirty data, compute the varia-
tions of gradients and estimate the gradients of uncleaned
data, quick convergence with a smaller number of cleaned
data can be achieved. To be specific, as shown in Fig. 3,
ActiveClean consists of four modules, which are Sampler,
Cleaner, Updater and Estimator respectively. Sampler is uti-
lized to select a batch of records to be cleaned, where the
selection criterion is measured by how much improvement
can be made after cleaning a record, i.e., the variation of the
gradient. The improvement is computed by an Estimator
based on current cleaned data. Then the selected records
will be checked and repaired by the Cleaner, which can be
conducted by humans. Next, the Updater updates the gra-
dients of the entire dataset based on these verified dirty
data. The above four steps are repeated until the budget is
used up. Note that ActiveClean only supports cleaning out-
liers and string normalization. Besides, ActiveClean focused
on models with convex loss (e.g., Logistic regression, SVM)
because global optimum can be guaranteed in this situation.

Krishnan et al. propose BoostClean [69] to clean the data
where an attribute value is out of range. It takes as input a
dataset, a set of pre-defined functions for detecting and
repairing out-of-range values, as well as a black-box model.
These values will definitely degrade the model performance,
so the optimization goal of BoostClean is to explore the best
sequence of repair operations so as to best improve the model,
rather than costly enumerating every record in the original
dataset and clean it. It makes the observation that detecting
errors and applying a cleaning function on a dataset can be
seen as generating a set of new features, and then a new
model can be trained on the cleaned dataset. Therefore, the
basic idea of BoostClean is to regard the best repair sequence

Estimated Estimator [
Improvement Yes
Selected Cleaned

Batch Batch
—> Sampl > Cleaner >| Updater Budget
Dirty Data Updfnc | No
Gradient
~ ~
Dirty Current Clean
Model Model Model

Fig. 3. The framework of ActiveClean.

selection problem as an ensembling problem, which applies
multiple repair operations on each detected dirty record and
infer the final result. To be specific, it consists of two modules,
i.e., error detector and repair selector. The former one takes as
input some pre-defined error detection rules, applies these
rules on records and generates a numerical vector for each
record. Then a sophisticated outlier detection technique(Isola-
tion Forest [90]) is used to detect errors (outliers) based on
these feature vectors. Then the latter one will select cleaning
operations to apply on these detected records. Inspired by a
typical method, Boosting [143] in ensemble learning, Boost-
Clean views each repair operation as a weak classifier, and
combines many of them collectively to make predictions. To
be specific, in each training iteration, it first generates the best
classifier on the current dataset, then weights the dataset con-
sidering the mispredictions by current classifiers and repeats
the above steps until the budget (pre-defined maximum num-
ber of cleaning operations) is used up.

CPClean [64] focuses on reasoning about the impact of
missing values on the downstream ML task M. In another
word, given a test example ¢, CPClean studies how much
impact the missing values have on the prediction M(t). To be
specific, suppose a dataset D has n missing values and the
domain size is m, we have m" possible imputations. All the
imputations constitute a possible world and each of them cor-
responds to a model. We hope that the predicted labels of all
models are relatively consistent for each ¢ so that fewer clean-
ing operations are necessary. An ideal case is that all labels are
the same for an example ¢, then ¢ is called, certain prediction
(CP). Intuitively, if all test samples are CP, it is wasteful to
impute the missing values. Therefore, the optimization goal of
CPClean is to prioritize imputing the records that are likely to
make test samples have consistent labels, towards to be CPs.
To this end, one has to obtain the labels of models in the possi-
ble world. A straightforward method is to train all the models
and make predictions, which is too expensive because training
is inefficient and the possible world is extremely large.
CPClean addresses this problem by restricting the model to
KNN classifier. In this way, to compute whether ¢ is CP, we
only need to consider the similarity scores between ¢ and train-
ing data, rather than training models.

DAGAN [92] focuses on the difference of the distribution
of missing values on multiple attributes, between training
data and test data. This often causes performance degrada-
tion on test data and it is a common scenario because a single
trained model is likely to be used in different test cases with
different missing value distributions. To address this, the
basicidea of DAGAN is to reduce the divergence on data dis-
tribution between training data and test data. First, it cap-
tures the missing value distribution from test data, then it
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TABLE 3
CleanML Summarization

Method Positive Negative Model Selection
Duplicates - v v

Outlier 4 v v
Inconsistency - - 4
Mislabels v - -
Missing values 4 - 4

adapts the training data to the captured distribution without
changing the labels. After that, it refines the ML model by
retraining with adapted data. In order to make the adaptive
learning process more efficient, two connected GANs are
adopted. One learns the distribution from test data, and the
other learns the observed data distribution to augment the
training data. Compared with CPClean, DAGAN is not
restricted to a certain model.

SampleClean [64] is proposed to clean the data so as to
obtain a high-quality approximate query processing (AQP)
result for aggregation queries on databases. Although it is
not for ML directly, aggregation queries are important to
data analysis [100], [101], [128] and can also be used as a fea-
ture for downstream ML tasks. This paper mainly considers
errors including numerical outliers and duplicates. For
example, an outlier will have a large impact on aggregation
operations (e.g., Average, MIN/MAX and SUM). However,
cleaning the entire dataset and then applying queries on the
cleaned data are expensive, so SampleClean uses an sam-
ple-and-clean framework to solve the problem. The basic
idea is that it first samples a subset of data randomly, and
then uses data cleaning techniques to clean the data. After
that, SampleClean leverages the cleaned data to answer
aggregation queries using statistic techniques. For example,
consider we sample a subset S from D and there is a SUM
query with a predicate 6. Given a tuple ¢, 6(¢t) = 1(0) denotes
t satisfies (dissatisfies) the predicate. Then we clean on S
and estimate the result over D as ﬁ > e 0(t) - |D|. They also
prove that the estimated results are unbiased.

CleanML [85] is a benchmark for joint data cleaning and
ML. It collects 13 real-world datasets containing 5 different
types of errors, which are outliers, duplicates, inconsisten-
cies, mislabels and missing values. CleanML tests the
impacts of these errors on 7 typical machine learning mod-
els (e.g., logistic regression, decision tree, random forest,
etc). To summarize, we draw a table to illustrate the
relationships between errors and ML performance.

In Table 3, the first column lists the error types. The sec-
ond (third) column shows whether data cleaning has a posi-
tive (negative) impact on machine learning tasks. The last
column means that whether model selection can further
improve the performance when data cleaning has positive
impacts, or eliminate the negative impacts. For example, the
first row indicates that cleaning duplicates will degrade the
model performance, but the degradation can be alleviated
by judiciously selecting models. Cleaning the outliers may
have positive or negative impacts on ML tasks, which
highly depends on the datasets. Making the data more con-
sistent is not likely to influence the model, but model selec-
tion increases the probability of having positive impacts.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 5, MAY 2023

Verifying mislabels and imputing missing values have posi-
tive impacts on ML tasks.

2.3 Data Labeling

ML models always need data with labels for training, espe-
cially for supervised machine learning. As we know, the
quality of labels has a large impact on the model perfor-
mance. However, high quality training data is always hard
to derive because it is always human expensive. In this sec-
tion, considering the labeling quality, human costs, we
review several directions for data labeling, including crowd-
sourcing, active learning and weak supervision, which are
summarized as Table 4.

2.3.1 Crowdsourcing

Crowdsourcing [18] leverages the crowd intelligence to
solve the tasks that are hard for the computer (See sur-
vey [82] for details). Thanks to the crowdsourcing platforms
like AMT [1], hundreds of thousands of crowd workers can
be hired to process users’ tasks, like image classification,
entity resolution or semantic tagging. There are three factors
in crowdsourcing that should be optimized. (1) Quality [20],
[21], [104], [172], [185]: Crowd answers may not be reliable
because malicious workers randomly return answers or
some tasks are difficult for humans to answer. (2) Cost [17],
[22], [23], [35], [49], [164], [166]: Humans are not free, but
the budget of a user is always limited. Hence, some techni-
ques have to be utilized to save the monetary cost. (3)
Latency [142], [162]: Since workers need time to think and
answer, they will be much slower than the machine, so it is
necessary to reduce the latency. There exist trade-offs
among the above three factors [19], [80], [81]. For example,
asking more workers to answer a task may increase the
quality, which costs much.

2.3.2 Active Learning

Active learning is a commonly used technique in machine
learning, which involves experts to label the most interest-
ing examples iteratively [126], [127]. Unlike crowdsourcing,
it always assumes that humans can provide accurate
answers. The key challenge is that given a limited budget,
how to select the most appropriate examples in each itera-
tion. Active learning has been covered extensively in sur-
veys [4], [147], so we only cover the most prominent
techniques in this part. Next, we will introduce several strat-
egies of selecting items to be labeled in each iteration.

Uncertainty Sampling. Uncertainty sampling [78] is one of
the simplest and most commonly used methods in active
learning, which selects the next unlabeled example that the
current model regards as the most uncertain one. For exam-
ple, when using a probabilistic model for binary classifica-
tion, uncertainty sampling chooses the example whose
probability is the nearest to 0.5. The uncertainty is always
measured by the entropy.

Query-by-Committee (QBC). The QBC [150] approach
extends uncertainty sampling by maintaining a committee
of models which are trained on the same labeled data. Each
committee member can vote when testing each example,
and the most informative example is considered to be the
one that most models disagree with each other. The
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TABLE 4
Comparison of Data Labeling Methods

Method References Label Quality =~ Label Cost Label Latency = Model-aware
Crowdsourcing [35], [104], [142], [164], [172] Medium Medium Medium X
Active Learning [78], [139], [148], [149], [150] High High High v

Learn from imperfect labels [8], [61], [62], [134], [137] Medium Medium Medium v
Weak Supervision  Data programming [10], [93], [131], [132], [141] High Low Low v

Fact extraction [113], [140] Medium Low Low X

fundamental idea is to minimize the version space, which is
the space of all possible classifiers that give the same classi-
fication results as the labeled data.

Decision-Theoretic Approach. Another active learning frame-
work utilizes the decision-theoretic approach, choosing the
example that would introduce the greatest change to the cur-
rent model with the assumption that the label is known. It
mainly consists of two approaches. The first one is the
“expected gradient length” (EGL) approach [149], the change
to the model can be measured as the length of training gradi-
ent. In other words, we should select the example that will
lead to the largest gradient if it is labeled. The latter one [139]
aims to measure how much its generalization error is likely to
be reduced rather than how much the model is likely to
change. Given an example, the basic idea is to first estimate
the expected future error of the model trained using the exam-
ple together with current labeled data on the remaining unla-
beled examples. Then the example induced the smallest error
is selected. However, for the above two methods, the true
label is not known in advance, so an expectation should be
optimized.

Density-Weighted Methods. The above frameworks are
likely to choose the outlier examples, which might be uncer-
tain and disagreeing but not representative. However, most
time the outliers contribute less than the representative
examples which follow the similar distribution of the entire
dataset. Therefore, existing works [148], [176] focus on
choosing examples not only uncertain or disagreeing, but
also representative of the example distribution.

2.3.3 Weak Supervision

In the above sections, crowdsourcing-based algorithms
focus on improving the quality of the training data itself,
while neglecting the impact on the downstream model.
Active learning methods can choose items to label consider-
ing the model performance, but it is prohibitively expensive
to hire experts. To address these limitations, weak supervi-
sion approaches are proposed to build connections between
weak labels and supervised ML models, where these labels
can be generated from crowdsourcing, human-crafted rules
or knowledge bases. Next, based on where weak labels
come from, we talk about learning from imperfect labels,
data programming and fact extraction.

Learning From Imperfect Labels. In this part, connections are
built between imperfect labels and supervised models. Ray-
kar et al. [134] propose a general framework for this problem.
Specifically, given a ML task, a typical setting is that we have
a training set D = {(z;, yl)}Z 1» where each z; is a tuple and y;
is the true label of x;. However, in real scenarios, these true

labels are not known in advance and needed to be labeled,
denoted by {4} ,. Hence, taking {(z;,5;)} -, as the observa-
tions, Raykar [134] used maximum likelihood estimation
to infer the model parameters 6 = {w,«, 8} based on the
answers of h labelers, which maximizes

N

P(D|) :HP

i=1

Then the above equation is transformed into the follow-
ing one, considering the true labels {y2}7 , as hidden varia-
bles, which can be solved by the Expectation Maximization
(EM) [115] algorithm, where «(B) is the true(false) positive
rate

N ~

P(D|9) = HP yt,...,yﬂyi =1,0)P(y; = 1|x;, w)
i=1
+P(y;77y7 |y7 =0 IB)P( —O|1’7,w)

Besides, many other methods have been proposed to
build models from imperfect labels directly without truth
inference. Kajino et al. [61], [62] propose to learn a logistic
regression model directly from crowd workers. Specifically,
each worker is treated as an independent classifier, and all
classifiers are modeled as a multi-task learning paradigm
that can be solved by convex optimization. Zhou ef al. [189]
define the confusion matrix for each item-worker pair,
which can capture the difficulty of each item and provide
more fine-grained optimization. Platanios et al. [124] used a
generative model to build relationships between workers
and items, and [123] extended it to support categorical
labels rather than purely binary.

In recent years, with the rapid development of deep
learning, there exist some works that apply deep learning to
learn from noisy labels. For example, Rodrigues ef al. [137]
also use EM algorithm to jointly learn the parameters of the
network and the quality of crowd workers, but they propose
a crowd layer that can train neural networks end-to-end
directly from the noisy labels provided by multiple workers
using backpropagation. Atarashi [8] learns from both imper-
fect labels and unlabeled data using deep semi-supervised
learning. To be specific, latent features and data distribution
of unlabeled data are considered and a generative model is
applied to train a classification model.

Data Programming. Many ML applications need a large
number of training data, which is prohibitively expensive to
obtain, even resorting to crowd workers. Therefore, data
programming techniques have been proposed to generate a
large number of weak labels using multiple labeling
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Fig. 4. Snorkel framework.

functions, where each function can be written by humans.
Naturally, a single function is far from generating high-
quality labels, so multiple functions should be combined to
generate labels. The most straightforward method of combi-
nation is majority voting, but it does not consider the corre-
lations and qualities of different functions.

To address this, Snorkel [130], [131] is proposed to aggre-
gate the results of multiple labeling functions to infer the
final labels. To be specific, as shown in Fig. 4, Snorkel first
provides the user-friendly interface to incorporate different
types of labeling functions, and applies these functions on
data gives us a label matrix £, where £ denotes the label
assigned by the jth function on the ith item. Second, follow-
ing the techniques in [9], [133], Snorkel leverages the factor
graph to build a generative model p,(£,Y), where ¥ =
{y1,..-Yi,.-ym} denotes the unknown true labels. The factor
graph aims to model the labels in £ for accurate inference.
Concretely, three factors, including the labeling cover, accu-
racy, and pairwise correlations of labeling functions are con-
sidered, denoted by (L, Y) =T{L] # 0},
¢ (L,Y) =I{L] = y;} and ¢7,(L,Y) = I{L] = L]}, where
I{-} is an indicator function that I{-} =1 if the condition
inside is satisfied, and otherwise I{-} = 0. ¢/ denotes that
the jth function does not abstain the ith item. ¢{" denotes
that jth function predicts accurately, but y; is taken as a
latent variable because it is unknown. ¢{7, (£,Y) represents
that jth and kth functions are highly correlated. Overall, the
model is defined as

pw(£> Y) = Z1;16Xp (Z wT¢i(£7 y7)> 5

=1

where Z,, is the normalizing constant, ¢, is the concatenated
vector of the above three factors for the ith item and w is the
corresponding parameters to be optimized. Since y; is
unknown in advance, we obtain w by optimizing the mar-
ginal likelihood over Y. Afterwards, the probabilistic train-
ing labels Y = p,,(Y|£) can be inferred through the factor
graph model. Then finally, Snorkel trains a discriminative
model over the input items and these probabilistic training
labels to generalize beyond the labeling functions. Follow-
ing the Snorkel project, Ratner et al. [132] have extended
Snorkel for multi-task learning. Mallory et al. [106] use Snor-
kel to extract chemical reactions from text. Bach et al. [131]
study how to deploy the Snorkel framework for an indus-
trial scenario in Google.

Moreover, some existing works [10], [93], [178] utilize
humans to qualify the labeling rules and leverage the high-
quality rules to label the data. Fan et al. [93], [178] propose
CrowdGame, which generates good rules to reduce the
labeling cost while achieving high quality. It first generates
a candidate set of rules. Then a group of crowd workers ver-
ify these rules, served as rule generators. Another group of
workers check the tuples covered by the rules, served as
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rule refuters. The two groups of workers work together iter-
atively to generate high-quality labeling rules. Boecking
et al. [10] propose an interactive weak supervision(IWS)
framework. Similar to CrowdGame, IWS generates a family
of rules and asks experts to verify them. Then a set of high-
quality rules are selected to build an end-to-end classifier
like Snorkel.

Fact Extraction. Fact extraction is another way to generate
weak labels using knowledge base, which contains facts
extracted from different sources. A fact usually describes
entities with attributes and relations, such as <China,
capital, Beijing>, which indicates the capital of China
is Beijing. The facts can be regarded as labeled examples,
which can be used as seed labels for distant supervision [140].
The Never-Ending Language Learner (NELL) system [113]
continuously extracts structured information from the
unstructured Web and constructs a knowledge base. Ini-
tially, NELL starts with seeds that have an ontology of enti-
ties and relationships among them. Then NELL explores
large quantities of Web pages and identifies new entity pairs,
which have the same relationships with seeds based on the
matching patterns. The resulting entity pairs can then be
used as the new training data for constructing more patterns.

3 MODEL TRAINING & INFERENCE

In this section, given sufficient and high-quality training data,
we focus on how to train a well-performed model while keep-
ing high efficiency on both training and inference stages. To
be specific, we will discuss feature selection (Section 3.1),
model selection (Section 3.2), acceleration approaches of train-
ing and inference using database techniques (Section 3.3).

3.1 Feature Selection

Given a set of features F = {f1, fo, ..., fm} On a dataset, fea-
ture selection(FS) aims to select an optimal subset 7* C F so
that a model trained on F* achieves the best performance.
Usually, as shown in Table 5 feature selection approaches
can be categorized into filtering methods, wrapper methods and
embedded methods.

Filtering Methods. This class of methods ranks features in
F independently using some score functions and select the
top-ranked ones as F*. Typical functions [45] include
mutual information, correlation coefficient between the fea-
tures, variance, student’s t-test or Fisher test. The advantage
of this method is its efficiency because it does not need itera-
tive training. The disadvantage is the selected features may
not be optimal because the dependencies of features are not
considered and it does not account for the variation of
model performance for feature subsets.

Wrapper Methods. To address the disadvantage of filtering
methods, wrapper methods are proposed to use the predic-
tive model to score feature subsets. In general, wrapper
methods consist of the following steps. (1) Generate a feature
subset 7' and the corresponding dataset D . (2) Evaluate
F' by building an ML model on D . (3) Iteratively repeat the
above two steps until a predefined performance is achieved
or all subsets have been evaluated. As wrapper methods
train a new model for each subset, they are computationally
intensive (O(2")), but usually get the best performing feature
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TABLE 5
Comparison of Feature Selection Methods
Goal Methods Quality Efficiency Model
Filtering [45] Low High All
For Model Quality Wrapper [52] High Low All
Embedded [57], [77], [156] High - Lasso, CART, DNN, etc.
Batching [79] - Medium All
. Materialization [79], [174] - Medium All
For Model Effciency Pruning [75], [151] - High NB, LR, SVM, ANN
Active Learning [6] - Medium All

set for a particular type of model or typical problem and they
are very commonly used in model training.

To address the efficiency problem, in the ML community,
many approaches have been proposed to reduce the search
space by generating some candidate feature subsets (see [52]
for a survey). Recently, several works [6], [75], [79], [151],
[174] have been proposed to leverage the DB optimization
techniques to accelerate the FS process from feature subsets
enumeration and feature subsets evaluation, which are the
focus of this subsection.

Embedded Methods. This class of methods integrates the
feature selection into the entire training process. The exem-
plar is LASSO [57] for building a linear model, which penal-
izes the regression coefficients with an L1 penalty, shrinking
many of them to zero. Besides, Decision trees such as
CART [156] have a built-in feature selection mechanism.
Recently, deep learning methods [77] have shown powerful
capability on automatic feature selection, but they need a
large training dataset.

Next, we introduce how to accelerate the feature selec-
tion using database techniques, including batching, materi-
alization, pruning and active learning.

Batching. Traditional feature selection tasks often need to
scan the same table many times, which is very time-consum-
ing. For example, given two subsets F1 = {fi, fo, f3}, F2 =
{f2, f3} to be evaluated. Without any optimization, D has to
be scanned twice. The batching technique used in Colum-
bus [184] is to batch some feature subsets together and evalu-
ate them within a single table scan, so as to reduce the I/O
costs. Each subset F;, corresponding to an ML model, has a
memory requirement m; for training. Therefore, given a
memory size constraint .S, the sum of memory usage of sub-
sets evaluated in each batch should not exceed S. Given the
constraint, the batching optimization problem can be modeled
as the bin-packing problem, which has been proved to be NP-
Hard. Therefore, Columbus adopts a heuristic method [79] to
solve the problem. The main idea is to select a subset as a batch
randomly, add other subsets one by one into the batch until
the memory constraint is satisfied and then construct a new
batch until all subsets are put into a batch.

Materialization. Given batches of feature subsets, a straight-
forward method is to load each batch via a table scan and
then evaluate them. However, as some small number of fea-
tures are accessed frequently, Columbus [184] further reduces
the costs through materializing some tables. For ease of repre-
sentation, we use the notation B to denote the union of subsets
of features in a batch. Suppose By = { fi, f2, f3} will be evalu-
ated by 10 epochs; while By = { f1, f2, f1} will be evaluated

by 100 epochs, which is visited more frequently than B;.
Given this information, we may materialize the columns cor-
responding to the features in B,. Then when we evaluate
By, we do not need to load the entire table. Specifically,
given a set of batches B = {Bj, B, ..., By} to be evaluated,
Columbus aims to select an optimal materialized solution
M={M,M,,... Mk} to minimize the evaluation cost,
where each M € M denotes a feature subset, whose corre-
sponding columns will be materialized as a table. The cost
can be derived from the sum of following aspects. (1) the
materialization cost of M, including reading tables from the
disk and write the materialized parts back; (2) for each batch
B € B, i) if it can be read from M € M, the cost equals to the
read cost of M. ii) the cost is the read cost of the entire table
concerning to the features in B. The problem is proved to be
NP-hard reduced from the set cover problem [79]. Next,
Columbus focuses on a frequent case in the FS process,
where batches in B can constitute a chain, i.e., By C By C
...By. In this case, Columbus proposes a dynamic program-
ming algorithm to solve the optimization problem with a
time complexity of O(N?).

Given a dataset, the above method assumes that features
have already been extracted and processed, the only thing
that needs to be done is to select an optimal subset of fea-
tures. However, in real applications, given the raw data,
many steps with respect to feature processing are necessary
such as feature extraction, feature transformation, feature
concatenation. From this perspective, Xin et al. [174], [175]
propose Helix that optimizes the entire ML workflow, with
much focus on feature engineering, through materialization.
To be specific, Helix models the ML flow as a directed acyclic
graph (DAG), where each node denotes an operation, like
feature extraction on an attribute. A directed edge denotes
that an operation is applied after another. At a high level,
multiple series of operations on different features comprise
multiple paths in the DAG. The intersection of paths repre-
sents that different features are combined together for a
more complex representation. Hence, each ML iteration is to
implement the nodes in topological order. Naturally, an ML
task needs multiple iterations, each of which is likely to
induce some modifications to the workflow. Therefore, it is
prohibitively expensive to implement the DAG from scratch
in each iteration. To address this, Helix proposes to material-
ize the results of some nodes, with the goal of accelerating
feature engineering during the entire ML iterations. Specifi-
cally, considering the time of recomputing a node (including
the time of recomputing its ancestors, if not materialized),
the time of loading the node (if materialized) and the storage

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:16:22 UTC from IEEE Xplore. Restrictions apply.



4656

Common Model
Broadcast Model

e Comp]ete% Update /Average
Dataset FH3 Qx| Collect Model ____|
Every Epoch
Conf 1_~Conf 2 Conf 3~ Conf 4
Complete Complete  Complete  Complete Data Data Data Data s
Data Copy Data Copy Data Copy Data Copy  pyrtition  PartitionPartition  Partition

(a) Task Parallel (b) Bulk Synchronous Parallelism

Models hop between partitions,

Common Model iop Seiedule”
== Broadeast/” . gions Example
Complete| Update

Da‘iﬂ == ” Descent|  Data 55 Data F conf1 1525354

Collect Gradients Partitionl Partition2 .
Every mini-batch Conf2 2->4->1->3
Conf3 3->1->4->2
Conf4 4->3->2->1

Data EF Data [F5] Data 5 Daw 55  Daa B Data 5
Partition  Partition  Partition Partition Partitiond Partition3

(c) Parameter Server (d) Model Hop Parallel
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overhead, Helix models the materialization problem as an
NP-Hard problem and uses a heuristic algorithm to judi-
ciously select features to materialize.

Feature Pruning. Existing works [75], [151] discussed
in Section 2.1 can also be utilized to select features. They
mainly focus on the situation where features are distributed
on multiple tables, and thus the join operation should be con-
ducted for feature selection. They leverage the VC dimension
in machine learning theory to efficiently prune features that
are not effective for the ML model without training.

Active Learning. For each feature subset, traditional meth-
ods will utilize all items corresponding to these features to
train an ML model and evaluate the performance. To accel-
erate the feature subset evaluation process, Zombie [6] pro-
poses to only use part of items with high utility on model
training, leveraging the idea of active learning. These items
with high utility can accelerate the model convergence. The
utility of an item is measured by upper-confidence bounds
(UCB), which is the upper bound of a certain confidence
interval. The higher the UCB of an item is, the more uncer-
tain and informative the item is. More specifically, first, the
input data will be clustered into several groups based on
their distribution and thus data in each group will have
high similarity. Second, ZOMBIE computes the average util-
ity of items in each group as the utility of the group, greed-
ily selects the group with the highest utility and randomly
samples an item from it to train an updated model. Third,
given the new model, ZOMBIE updates the utility of each
item and repeats the above steps until converge.

3.2 Model Selection

Model selection aims to generate a machine learning model
and set the hyper-parameters to improve the model
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performance most for a specific ML task [73]. Existing meth-
ods consist of two directions, traditional model selection and
neural architecture search (INAS). The former one focuses on
selecting the best model from traditional approaches such as
SVM, Random Forest, KNN, etc, while NAS aims to auto-
matically construct a well-performed neural architecture,
including model structure design and hyper-parameter set-
tings, which is a current hot topic in both ML and DB com-
munity. In the ML community, many automated techniques
(see [5] for a survey) like grid /random search, reinforcement
learning method, Bayesian optimization have been proposed
to achieve well-performed models or improve the efficiency
of training one model at a time. However, the key bottleneck
of the model selection problem is its throughput, i.e., the
number of training configurations tested per unit time. High
throughput allows the user to test more configurations dur-
ing a fixed period, which makes the entire training process
more efficient. Therefore, in this subsection, we focus on the
DB-based acceleration for NAS as shown in Table 6, where
parallelism is the main technique.

Task Parallel. Moritz et al. [116] propose a distributed
framework Ray, which allows different training configura-
tions to run on different workers in a task parallel way. As
shown in Fig. 5a, in each worker node, sequential SGD is
applied on the entire dataset and thus the reproducibility
and convergence can be guaranteed. However, the down-
side of this method is that it has to copy the whole dataset
to each worker, which results in poor scalability. If there is a
large dataset, a user has to sample the data to train, which
may result in overfitting. Moreover, transferring the whole
dataset to workers also leads to waste of memory and stor-
age. To address the scalability issue, bulk synchronous par-
allel approach is proposed to train a configuration on
multiple worker nodes.

Bulk Synchronous Parallelism. This approach utilizes a
master node and several worker nodes to conduct model
selection, and MLBase [68] is a representative system. First,
given an input dataset, the user specifies an ML task on the
master node. Then TUPAQ, the optimizer [155] of MLBase
first parses the user input, and then generates some model
configurations to be evaluated. For each configuration,
TUPAQ evaluates it in parallel on worker nodes because
the entire training set cannot be loaded into the memory of
a single machine. To this end, as shown in Fig. 5b, TUPAQ
divides the dataset into several parts, each of which is sent
to a worker node. Then TUPAQ trains these partial datasets
on these nodes respectively, computes the updated gradi-
ent, and sends the updates to the master node. Next, the
master node computes the average updated gradient to

TABLE 6
Comparison of Model Selection Acceleration Methods

Methods Scalibility Convergence Reproducibility
Task Parallel [116] Low Good Good
Bulk Syn. Parallel [68], [155] Medium Medium Good

Asyn. PS Very High Poor Poor
Parameter Server(PS) [84] Syn. PS High Medium Good
Model Hop Parallelism [118] Very High Good Good
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build a new model and sends it back to worker nodes.
Then the worker nodes continue to train iteratively until
converge. Therefore, it has a good scalability because it
can run each configuration in parallel. However, the
downside is that it is harder to converge than the task
parallel approach, because different parts of data are
trained independently.

Parameter Server. Parameter server [84] can be taken as a
fine-grained way of bulk synchronous parallelism, which
also runs each configuration in parallel. As shown in Fig. 5c,
the difference is that worker nodes send the updated gra-
dients when each mini-batch is finished and then pull the lat-
est model from the master node. There are two classes of PS,
synchronous and asynchronous parameter server. The
former asks the master to compute the average updated
gradient when all workers finish a mini-batch. The latter
asks the master to train whenever an update comes.
Therefore, asynchronous PS has a good scalability but
poor reproducibility. Besides, synchronous PS has better
convergence because of fresh gradient updates but
higher overhead due to synchronization. Compared with
bulk synchronous parallelism, PS has higher scalability
and better convergence because of its finer granularity in
mini-batch, but the communication cost is higher due to
the frequent communication.

Model Hop Parallel. To achieve high scalability, good con-
vergence and reproducibility, Nakandala et al. [118] proposed
a model hop parallelism(MOP) framework CEREBRO, which
combines the ideas of task parallel and BSP to run configura-
tions in parallel on both task and data level. Different from
the above works, as shown in Fig. 5d, CEREBRO uses a
decentralized architecture without the master node. Given a
dataset D, a set of model configurations S to be executed and
p worker nodes, it first shuffles and partitions D and differ-
ent partitions will be distributed to the p worker nodes. Since
there are p worker nodes, CEREBRO can evaluate p configu-
rations in S in parallel. To this end, in each training epoch, it
first selects p models from S to train on different data parti-
tions. Then, each model only has the training result over a
partition instead of the entire dataset, so these p models will
hop to next worker node in accordance to the pre-generated
hop schedule. After p hops, all models will be trained over the
entire dataset D. Then another p models are selected to train
until all models in S have been evaluated. One of advantages
of CEREBRO is that for each model, the entire process is logi-
cally equivalent to sequential SGD, which results in good
convergence. Furthermore, by saving the hop schedule, it is
easy to restore the SGD sequence for every model and thus
has a good reproducibility.

3.3 Acceleration of Train & Inference

Besides feature and model selection, the most important part
in ML is model training and inference. In the ML community,
training a model means to minimize a loss function, where a
number of optimization techniques can be utilized such as
gradient descent, back propagation, etc. Since there exists a
lot of data to be trained (inferred) and the data operations
(matrix multiplication, matrix inversion) in this step is
always computationally intensive, model training and infer-
ence are always time-consuming, especially for training.
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Hence, in this subsection, we focus on how to leverage data-
base techniques to accelerate model training and inference.

3.3.1 Linear Algebra Optimization

Most ML algorithms rely on computations of linear algebra
(LA) operations. However, these operations, like matrix mul-
tiplication, are always time-consuming. Therefore, accelerat-
ing the computation of LA operations is to accelerate the ML
algorithm to a large extent, in both training and inference
stages. In this part, we discuss how to rewrite LA operations
for ML acceleration.

Optimize in Database. Cohen et al. [30] propose MAD,
which executes LA operations in database so that the com-
putation of operations are likely to be accelerated because 1)
data storage and computation will be managed by DBMSs
uniformly, so the time of data transformation can be saved.
2) some database techniques (e.g., index, join) can be uti-
lized for efficiency. To this end, MAD has to represent
matrices using relational tables and covert LA operations to
relational algebra (RA) applied in DBMSs. For example,
consider matrices R and T" with dimensions m x land [ x n
respectively. To compute C' = Rx T , where Cj; =Y\,
R;;Ty;, MAD represents the table R as R(i,j,v), where v
denotes the value of the element at (i, j). Hence, C can be
computed by SQL query:

SELECTR.i, T.j, SUM(R.V*T.Vv)

FROMR, T

WHERER.j=T.1

GROUPBYR.3j, T.i;

Also, MAQ supports other LA operations like add, ele-
ment-wise multiplication, transposition etc. However, it
works well for sparse matrices, but not suitable for dense
matrices because the dense ones induce much storage over-
head. To address this, MAQ allows users to design compli-
cated functions (UDFs) to compute LA operators, e.g., the
dot product of two vectors. In this way, training and infer-
ence can be accelerated in database.

Rule-Based Optimization. Although MAD accelerates LA
operations by executing them in DBMSs, it neglects that LA
operations can be optimized for further improvement of effi-
ciency. To be specific, rewrite or fusion of LA operators can
avoid large unnecessary intermediate results. For example, if
one aims to compute the operation sum(A ® X), she has to
first materialize the intermediate A ® X matrix, which leads
to extra time and storage overhead. If she rewrites it as A ©®
sum(X), the intermediate matrix can be removed. To this
end, Culumon [53] and SystemML [11] propose to optimize
LA expressions using rule-based methods. The key idea is to
leverage different rules to select appropriate logical and
physical plans considering a cost model. Specifically, the
optimizer of SystemML [14] first models the LA operators in
each expression as a DAG, and then performs static analysis
such as common subexpression elimination and rule-based
algebraic simplification, which can be regarded as logical
level optimization. Afterwards, the optimized DAG is then
used for cost-based physical level operator selection, where
the optimizer can decide which backend (CPU/GPU/map-
reduce for distributed computing) to use by taking the size
of matrices, sparsity, and memory constraint of a single
machine into account.
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RA-Based Optimization. Hence, the rule-based methods
match the patterns in a LA expression for optimization,
which suffer from two limitations. First, a large number of
patterns and matrices with different formats (sparse/dense)
resultin heavy development efforts. Second, slightly changed
patterns (e.g., add e to avoid dividing zero) can make existing
rules inapplicable. To address this, Elgamal et al. purpose
SPOOF [37] framework that can apply rewrites and fusion
on LA operators automatically. Specifically, SPOOF takes as
input LA operators, transforms input into a RA plan, which
will be optimized by the cost model in databases, consider-
ing typical RA rules (e.g., aggregation pushdown, selection
pushdown, join elimination). Finally, SPOOF transforms the
optimized RA plan back to LA operators. In a nutshell, by
leveraging RA, SPOOF transfers the burden of managing
patterns of LA expressions from developers to the DBMS
optimizer. Moreover, the optimizer can also handle slightly
changed patterns.

SPORES [171] pushes the idea in SPOOF one step further
with seven rules to rewrite RA expression, and proves that
the rewrite rules are complete, i.e., with just seven rules, a
RA expression corresponding to a LA expression can be
transformed to any other equivalent RA expressions. With
the completeness guarantee, SPORES can search much
larger space to find the optimal equivalent expression. In
order to search efficiently, SPORES adopts a compiler tech-
nique called equality saturation, which splits the optimiza-
tion process into two phases: exploration and extraction. The
former one builds a data structure, e-graph [36] that com-
pactly generates and stores all equivalent expressions by
applying these rules. In the following extraction step,
SPORES searches the optimal result on the graph.

Besides, LARADB [54] also notices the close relationship
between RA and LA, which aims at designing a specific alge-
bra as an intermediate representation for both LA and RA.
Then it rewrites the representation for optimization, and exe-
cutes the corresponding physical plan in database. More-
over, motivated by the observation that operator fusion may
lead to redundant computations in common subexpression
elimination, Boehm et al. [13] propose a novel cost model
that takes frequencies of subexpressions into account to
select the best fusion plan.

3.3.2 Factorized ML

In the ML community, people always assume that the input
data are stored in a single table. However, enterprise data
are always scattered in multiple relational tables due to nor-
malization, so data analysts must materialize data in a single
table by joining all tables and export data out of databases.
This causes large computational cost and storage overhead,
as well as data leakage risk. Factorized ML is purposed to
address these issues by supporting machine learning on
multiple relational tables and pushing ML operators down
to each single table.

Kumar et al. [74] purpose factorization method for gener-
alized linear model (GLM). Given two tables S with ng rows
and R with nr rows, a linear model on feature sets xg C S
and zp C R needs to be trained. S contains a foreign key FK
to join with R. When training with the gradient decent
method, VF =3 <,G(y,w"z;)z; is calculated in each
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Fig. 6. A factorized machine learning example.

iteration, where F is loss function and G is derivative func-
tion of loss on a single training instance. As shown in Fig. 6,
if the model is trained on the joined data, w’z = whzg +
wﬁz r will be calculated ng..p times, while only ng times
wgﬂc s and ng times w,sz r calculation are necessary when the
inner product is pushed down to single table. Hence, factor-
ized GLM pushes the inner product operation down, in
order to fully utilize the property of normalized data in data-
bases to avoid redundancy in calculation and reduce storage
overhead of joined data by calculating the inner product on-
the-fly.

Schleich et al. propose F [144], focusing on arbitrary join
rather than the PK-FK one, but it is restricted to linear regres-
sion task, which designs a system to build regression model
in database efficiently. Furthermore, F also leverages the
mathematical expression rewrite strategy to further optimize
the efficiency. Specifically, for linear regression task with
least square loss, the gradient VF = E;ZI(EZZOG/{.TS))JISZ) will
be calculated in each iteration(m,(;’) denotes the kth feature
of ith data item in ), because 6 will be updated every itera-
tion. However, if one rewrites it to X ( Z';lx?' 2\")ox,
xy) xgj) can be shared between iterations so that the efficiency
is improved. AC/DC [65] further generalizes F to non-linear
models and categorical features under functional dependen-
cies. LMFAOQ [145] is a system that builds on F and AC/DC to
support aggregation operations(commonly used in ML opti-
mization) over the join. For efficient execution, LMFAO also
leverages the code generation technique to support multi-
output optimization, i.e., calculating multiple results in one
pass of join tree traversal.

Although factorized ML methods can reduce redundancy
of computation compared to traditional compute-after-join
ways, they are difficult to be applied as they need complete
re-implementation of ML algorithms, which takes too much
effort. To address this, Chen et al. develop a framework
MORPHEUS [24] that aims to support a number of ML algo-
rithms with few modifications efficiently. To this end, MOR-
PHEUS defines a new data type called normalized matrix
that connects the high-level machine learning algorithms
and low-level matrix computation operators. Then almost all
ML algorithms built on basic matrix operations can be imple-
mented by the normalized matrix. Specifically, for table S
and R with S.FK-R.RID equal join, the normalized matrix for
joined table is Ty =[S, KR], where K is a matrix and
K]i, j] = 1if FK of ith row in S'is equal to j, otherwise 0. With
matrix K, normalization information from origin data can be
preserved, and basic matrix operations such as matrix multi-
plication and cross-product and matrix inversion can be
implemented with pushdown. Moreover, Li et al. extends
normalized matrix, and purposed MorpheusFI [86] to sup-
port efficient quadradic pairwise feature interaction i.e.,
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Fig. 7. A graph optimization example.

including pairwise product of features to boost model accu-
racy. Yang ef al. [179] explore the property of L, norm term,
and figure out a method to factorize Gaussian kernel SVM
with Gaussian kernel property.

3.3.3 Computation Graph Optimization

In this part, we discuss a higher level optimization, i.e.,
computation graph optimization in deep neural networks
(DNN). Nowadays, many typical DNN architectures have
become larger and deeper, resulting in a large amount of com-
puting resources. To mitigate this, it is natural to optimize
computations in a DNN, which is defined as a computation
graph of mathematical operators. Existing deep learning
frameworks like TensorFlow, PyTorch, optimize an input
graph by performing greedy rule-based substitutions on it. Each
substitution replaces a subgraph matching a specific pattern
with a new subgraph that is equivalent to the original one. For
example, operator fusion integrates multiple operators into a
single one, which removes intermediate results, and thus sys-
tem overheads such as memory accesses are reduced.

The main challenge of computation graph optimization is
that the search space of all equivalent computation graphs is expo-
nentially large, which inevitably brings huge cost and
requires higher search efficiency. Existing deep learning
systems solve the problem using a rule-based method that
continuously improves the efficiency, which may get stuck
at the local optimum.

To solve this problem, Jia et al. propose MetaFlow [59],
which establishes a cost model to efficiently estimate the time
usage of computing the network, considering rules with
respect to the statistics like FLOPs, memory usage, and the
number of kernel launches etc. Unlike Pytorch, MetaFlow
considers rules with increasing cost in the intermediate com-
putation graphs to seek more optimization opportunities. For
example, as shown in Fig. 7, an enlarge substitution is first
applied to enlarge a convolutional layer from 1 x 1 x 64to3 x
3 x 64, which in fact increases the intermediate total cost.
However, after subsequent substitutions that fuse operators
like add and relu together, the final optimized computation
graph can achieve a 1.3x speedup. During the search process,
cost-based backtracking search is utilized. Besides, to ensure
search efficiency, the computation graph is divided into
smaller subgraphs and optimize respectively. However, the
substitution rules in MetaFlow are designed manually, which
is human expensive. Therefore, Jia et al. further propose
TASO [58], where an automatic rule generator is proposed.
The generated rules can also be automatically verified as long
as the properties of the operators, e.g., associativity, commuta-
tivity are provided. In this way, less human efforts are needed.
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To thoroughly optimize the problem, Fang et al. [41] for-
mally define it as a cost minimization problem. Specifically,
taking as input the initial computation graph G, a set of sub-
stitution rules ®, the substitution length limit & and a cost
function f, the optimizing computation graph problem is to
find a graph substitution sequence P with length no more
than K such that the cost of the optimized graph G’ after
applying P is minimized. The problem is proven to be NP-
hard and an efficient heuristic method with polynomial
time complexity is proposed for more practical usage.

The above methods all apply substitutions in a sequential
manner, i.e.,, choosing substitution rules one by one. Such
methods are sensitive to the order in which the substitutions
are applied and often only explore a small fragment of the
exponential space of equivalent graphs. In other words, the
order in which substitutions are applied directly affects the
quality of the final graph. Therefore, TENSAT [180] presents
a novel technique for computation graph optimization that
employs a compilation technique named equality satura-
tion [157], as discussed in Section 3.3.1, to apply all possible
substitutions at once.

Memory Optimization. Given a computation graph, there
exist some memory management techniques to optimize the
memory usage while executing the ML algorithms over the
graph. They can help to save the memory space such that
the database/ML systems can be able to run more ML tasks
simultaneously.

Generally speaking, the approaches of memory manage-
ment techniques, especially for GPU memory, can be mainly
categorized into 4 groups. (1) Model compression saves the
memory of deep learning algorithms by reducing the preci-
sion of parameters or simplifying the complex neural archi-
tectures. Typically, mixed precision numbers, single bit and
half precision can be utilized in the deep neural networks to
save memory [31], [76], [107], but they may introduce quanti-
zation errors [158]. Also, model pruning methods can also be
applied to shrink the complexity of the networks [48], [50].
However, the above methods may decrease the accuracy, so
there is a trade-off between the model compression and per-
formance. (2) Model sharing aims to reduce the memory usage
by sharing, which can be classified into two categories. One
is to use the in-place operation that stores the output of a
layer exactly at the physical address of the input. For exam-
ple, given a layer y = relu(x), y can be directly stored at the
place of z. The other one is buffer reuse [25], [26], which
shares the memory among variables existing in different life-
times without overlapping. Once the computation graph is
built, we can capture the data dependencies so as to provide
smarter memory allocation. (3) Computation trading refers to
freeing some intermediate results (e.g., feature maps) while
forward propagation, so as to save the memory of graph
computation. However, during backward propagation,
these results have to be recomputed to derive the gradients.
Therefore, existing works [26], [125], [168] focus on judi-
ciously selecting the intermediate results that are easy to
compute to drop. (4) Memory swapping aims to swap varia-
bles that are not being used to CPU, and then back to the
GPU memory before their following access. Most works [34],
[168] rely on the user to specify which layers or tensors
should be swapped, and thus an automatic approach to
memory swapping is desired.
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3.3.4 Hardware Acceleration

Hardwares are always utilized to accelerate ML algorithms,
like FPGA, GPU. Recently, many researchers have studied
how to use specialized hardware design to accelerate the in-
RDBMS execution of complicated data analytics.

Mahajan et al. propose DAnA [105], a system that uses
FPGA to conduct acceleration in databases. There are mainly
two contributions. On the one hand, DAnA is an easy-to-use
system that encapsulates the complexity of execution of
FPGA and DB using UDFs. On the other hand, the limited
CPU memory bandwidth limits the potential of FPGA if they
are connected together directly. To address this, DAnA pro-
poses Striders that bypass CPU and its memory subsystem,
directly communicating with the RDBMS buffer pool. Besides,
to fully utilize the FPGA bandwidth, the data are transferred
to FPGAs at a granularity of pages using multi-threads.

ColumnML [63], on the other hand, focuses on FPGA accel-
eration on column-store data frequently used in OLAP data-
base. It is not trivial to integrate ML and OLAP database
efficiently because they are different in the execution model
and data layout, and ColumnML turns to FPGA for help. Spe-
cifically, ColumnML concentrates on stochastic-coordinate-
descent(SCD) over data in columnar format. Directly using
basic SCD algorithm suffers from inefficiency because (1) origi-
nal SCD algorithm is poor in cache locality because it has to
keep a huge amount of intermediate state; (2) in column-stores,
data are often compressed and encrypted [7], and thus recover
the data can be costly, which can be well accelerated by FPGA.
For the first challenge, ColumnML proposes a partitioned SCD
(pSCD) algorithm that divides the complete dataset into parti-
tions. SCD is then performed on each partition independently
and the final model is collected by model average. With pSCD,
the complexity of memory accesses can be reduced due to
cache locality. Besides, pSCD is more parallelizable, requiring
little synchronization and can be well accelerated by FPGA. In
this way, this process can fully utilize the available memory
bandwidth of FPGA and get higher throughput. With respect
to the second challenge, ColumnML improves also by leverag-
ing the architectural flexibility of FPGA. By making the decom-
pression and decryption in parallel in the whole pipeline using
FPGA, the data transformation can be completed efficiently
without any throughput reduction.

There have also been works on GPU-based database sys-
tems. Previous works [44], [83], [167], [182] have demon-
strated that these GPU-based systems can bring efficiency
improvement on analytical workloads. This improvement
comes from that in-memory analytics is typically memory
bandwidth bound, and GPU generally has larger band-
width (about 10x).

However, the above GPU-based database systems only
treat GPU as a coprocessor. For any query, correlated data
are shipped between CPU and GPU over PCle. PCle is an
order of magnitude slower than GPU, and can even be
slower than CPU. Therefore, previous coprocessor design is
suboptimal and does not fully utilize the ability of GPU. To
this end, Anil ef al. propose Crystal [152] that avoids the
process of such data transfer by implementing database
operator completely on GPUs, which induces several chal-
lenges because of the main difference between CPU and
GPU, i.e., GPU has a larger number of weaker cores.
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First, synchronization between a large number of threads
can be costly. Second, each thread of GPU has much smaller
memory and weaker computation ability, which limits
the operator implementation. Crystal proposes a Tile-based
execution model to solve these challenges. GPU threads are
generally grouped into thread blocks that are defined as tiles.
Within each tile, threads can communicate through a larger
shared memory. Therefore, using tile as the basic unit both
reduces the fetch operations to the global memory and brings
more available memory to each single thread. In the paper,
operators including projection, selection and hash join
designed for GPU implementation are proposed, with which
Crystal avoids data transfer over PCle and achieves higher
efficiency. However, since Crystal needs the memory of GPU
can hold the complete dataset, current supported dataset size
is limited and generally requires higher financial cost.

4 PosT-ML: MODEL MANAGEMENT

While training the model, developers usually try dozens of
model architectures, tune the hyper-parameters, and then
check their performance. Therefore, how to manage the
trained models becomes a challenge, which aims to store, ver-
sion, query, deploy, monitor, and debug the ML models
(including managing their metadata). In this section, we dis-
cuss the challenges of model management from the manage-
ment perspective and survey some works that aim to improve
the effectiveness and efficiency of model management.

4.1 Model Storage, Versioning, and Query

After training, multiple models are built. In this section, we
study model storage, versioning and querying, which have
close relationships with each other. First, these models
should naturally be stored for further analysis. Then for
these stored models, version control should be applied to
track them for flexible search, i.e., model querying. Also,
declarative languages can also be designed to achieve user-
friendly querying.

ModelDB [161] is the first open-source model management
system that aims to automatically track, index, and explore
ML models, which consists of three components: native client
libraries for supporting different ML environments, a back-
end for storing the model, and a web-based visualization
interface for exploring and analyzing the model metadata.
Specifically, the native client libraries component is designed
for automatically managing models in their native environ-
ments (e.g., spark.ml, scikit-learn), so as to minimize the
usage cost for new users (e.g., changing their familiar ML
environment). Next, the backend component will store the
ML pipelines as a sequence of actions, which are stored in a
relational database in the backend. The ML models are stored
and indexed using a customized storage engine. Finally,
ModelDB designs an easy-to-use web-based interface for the
users to explore and analyze a large number of models and
pipelines. With the help of visual interface, the users can eas-
ily review, compare, and analyze the models and pipelines.

Similar to ModelDB, ModelHub [110] is an end-to-end model
lifecycle management system that enables users to store,
version, snapshot, query, and reuse models and their
data artifacts (e.g., hyperparameters, trained snapshots), but
it especially optimizes for the deep learning workflow.
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ModelHub follows the client-server architecture, with three key
components: a model versioning system, a domain-specific
language module for assisting developers, and a hosted deep
learning model sharing module.

4.2 Model Diagnosis

Given a trained model, its performance always does not
achieve the requirement. Hence, the goal of model diagnosis
is to assist ML developers to understand why the training
process doesn’t achieve an acceptable performance and
help developers find the root cause in model or data, so as
to make efforts to improve the performance. To this end,
some developers analyze trained models (and data artifacts)
by manually looking into the model in an ad-hoc, one-off
basis, e.g., writing a python script to analyze the embed-
dings vector in deep neural networks. However, the above
method faces two main challenges w.r.t. data management,
i.e., (1) large storage overhead because of a large number of
data artifacts produced during the model training and test-
ing stages; (2) high computational cost because diagnosing
among the large number of data is not efficient.

To address the aforementioned challenges, there are a
line of systems [27], [51], [108], [109], [146], [160] proposed
by the data management community. Generally speaking,
such systems devise a variety of storage optimization tech-
niques such as de-duplication and quantization to reduce
the storage size or develop sampling-based techniques to
speed up the model diagnosis query process.

MISTIQUE [160] aims to efficiently capture, store, and
query model intermediates (i.e., data artifacts related to the
model) for model diagnosis. It consists of three steps: (1)
Model Intermediates Logging: it allows developers to call
APIs to request MISTIQUE for logging model intermediates
for each model layer. (2) Access Data Artifacts: next, devel-
opers can access the data artifacts logged in MISTIQUE via
the APIs. The data will be returned as the Python Numpy
arrays. (3) Run Model Diagnostic Query: then, developers
can perform model diagnostic queries on these data arti-
facts, or use predefined analytic functions for analysis. The
key technical contribution among the three steps is how to
store the large volume of the model intermediates, where
three key ideas are adopted. First, for deep neural networks,
MISTIQUE adapts activation quantization techniques to reduce
the storage cost. To be specific, it approximates the neural
networks using floating-point number, and thus it can dra-
matically reduce the storage cost without sacrificing much
accuracy; Second, it devises a similarity-based compression
mechanism to remove redundant data between model inter-
mediates both for ML pipeline. Finally, MISTIQUE proposes
adaptive materialization to materialize those intermediates
visited frequently, e.g., the prediction part of a model. How-
ever, materialization also induces the storage cost. Thus, it
adopts a cost model to trade-off the increase in storage
against the improvement of query efficiency.

Besides diagnosing the performance of a ML model, under-
standing and interpreting the reasons behind the performance
is also important. DeepEverest [51] is a system that focuses on
accelerating top-k interpretation by example queries [89], e.g.,
retrieving the top-k maximally activated neuron. For example,
given a trained DNN for an image classification task, a devel-
oper might be interested in understanding which parts of an
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image makes the DNN predicting correctly. To this end, the
developer has to inspect which groups of activated neurons
act as the semantic detectors of features in the image (e.g.,
ears). To avoid materializing as many activation values as pos-
sible, DeepEverest builds an index, called Neural Partition Index,
on the query search keys. Then, it devises a query execution
algorithm, named Neural Threshold Algorithm, to utilize the
Neural Partition Index to progressively process those inputs
that potentially produce the top-k results needed by the users.
Benefiting from the above optimization techniques, the query
execution time can be significantly reduced by reducing the
number of inferences performed by DNN, while guaranteeing
the precision of the top- results.

DeepBase [27], [146] provides a unified interface for devel-
opers to express their analysis to quickly understand the neu-
ral network behavior. It abstracts the model diagnostic
queries as hypotheses verification task. More specifically,
DeepBase takes as input a testing dataset, a trained neural net-
work model, a set of Python codes that contains hypotheses of
what the model may be learning (it denotes as hypothesis func-
tions, and a scoring function (e.g., a measure of statistical
dependency). Next, the system computes a set of scores that
measure the affinity between the hypotheses and the neural
network models” hidden units. Similar to other model diagno-
sis systems, the efficiency bottleneck of DeepBase is the large
volume of activations to be extracted, stored, and matched
according to the given hypotheses. To alleviate these issues,
DeepBase proposes three main optimization techniques, i.e.,
cacheing, early stopping and streaming execution.

4.3 Model Deployment and Serving
In real-world ML applications, deploying and serving ML
modes can be challenging because: (1) it usually needs to
incorporate multiple evolving modules together (e.g., inte-
grating TensorFlow into software infrastructure) for predic-
tion in the production environment, but ML developers
may be unfamiliar with such operations. (2) the real-time
data (e.g., IoT data) for prediction comes in a fast stream
way and some applications (e.g., finance) have stringent
latency requirements. Thus the model deployment and
serving infrastructure should have: (1) easy-to-use systems
for developers to deploy their models seamlessly; and (2)
high throughput, low latency, and good performance.
Clipper [32] is a general-purpose model serving system
that provides low-latency and high throughput prediction
services, which consists of two layers: the model selection
layer and the model abstraction layer. When ML applica-
tions send the prediction requests to the Clipper, the model
selection layer first analyzes the requests and then dis-
patches the requests to one or more models through the
model abstraction layer. The reason why it dispatches the
prediction requests is because it allows many candidate
models to work together and combines their prediction
results to boost application accuracy. After the model
abstraction layer receiving the requests from the model
selection layer, the model abstraction layer calls target mod-
els across machine learning frameworks (e.g., TensorFlow
and Scikit-Learn) via APIs. Clipper devises a set of optimiza-
tion techniques (e.g., caches and batching) in the model
abstraction layer to ensure low latency and high throughput
and adapts bandit and ensemble approaches in the model
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selection layer to improve the accuracy of prediction results
and estimate the uncertainty.

TensorFlow — Serving [120], a flexible and high-perfor-
mance model serving system for ML system, is developed
almost concurrently with the Clipper. TensorFlow — Serving
shares some similar features with the Clipper, e.g., both are
dedicated to a general-purpose model serving system that is
model-agnostic and has similar optimization techniques
such as batching. TensorFlow — Serving is powered by the
state-of-the-art production infrastructure used by Google,
while Clipper is a research-oriented prototype to demonstrate
its research idea. TensorFlow — Serving supports off-the-shelf
integration with TensorFlow models, and can be extended to
serve other types of models with a little extra effort.

4.4 ML Pipeline Debugging

ML pipeline debugging, which is usually in the production
environment, refers to debugging unexpected results under
new testing data and finding root causes of them. It shares
many common features with ML model diagnosis (Sec-
tion 4.2). For example, both need to manage a large volume
of data artifacts and model instances, helping the user to
verify their hypotheses. However, ML pipeline debugging
focuses on debugging when new testing data does not per-
form well after deployment, while model diagnosis debugs
models while developing.

Generally speaking, the reasons of failures in an ML pipe-
line are two-fold: (1) data errors: the issues of the input data
or the intermediate data produced by the code, and (2) model
bugs: a set of unsuitable settings in the model, including raw
codes, hyperparameters, computational modules, etc. Identi-
fying the reasons of a failed ML pipeline is challenging, often
requiring much time and human efforts, but is still error-
prone. In the data management community, there are a line
of works focusing on the above two problems of ML pipeline
debugging, i.e., data debugging [136], [159], [170], [173] and
model debugging [94], [95], [96].

In some cases, although the query (e.g., a SQL query) and
queried data (e.g., the customer data) are correct, the errors
in the training data may cause the trained model to make
false predictions and further lead to wrong outputs. Given
this context, Rain [173], a training data debugging system,
helps the user capture training data errors by leveraging not
only the ML model and data but also user complaints (i.e.,
those errors annotated by the user) about final or intermedi-
ate outputs. To address the training data issues, Rain aims to
find a minimum set of training records such that if they are
removed, the user complaint could be solved. Another chal-
lenge for debugging training data is that if we remove
records in the training set, we need to retrain the model to
estimate how the model parameters change. Obviously, it is
time-consuming to retrain the model to estimate the influ-
ence of removing some training records. To alleviate this
issue, Rain leverages the influence functions [67] to estimate
how the model parameters change by removing a set of
training records and without retraining the model.

DataX — Ray [170] and Dagger [136] are also the data debug-
ging systems. DataX — Ray [170] focuses on debugging a large-
scale data pipeline by explaining where and how errors
appear in the data generation process. DataX — Ray treats data
debugging as the problem of finding shared features among

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 5, MAY 2023

erroneous data elements. It takes as input the provenance of
pipeline instances and annotated errors and outputs a set of
features for explaining the reasons for annotated errors. Simi-
larly, Dagger [136] also can identify data issues in the data gen-
eration process, but it typically focuses on diagnosing the
issues of intermediate data produced in the pipeline. Flip-
per [159], sharing many common features with the above two,
is a human-in-the-loop framework for debugging the training
data produced by generative models. It provides users with
easy-to-interpret high-level descriptions of issues in the train-
ing data and then helps users to improve the quality of their
training data.

The ML pipeline may crash when trying a set of new
parameter values, it is time-consuming and tedious for
developers to valid new ML pipeline instances and find the
root cause of failures. Thus, MLDebugger [96] is a model
debugging system that automatically and interactively cap-
tures a set of root causes for failures in the ML pipeline. It
first takes a group of ML pipeline instances as input, then
derives a hypothesis about possible root causes. Next, it
devises an algorithm to wisely choose new ML pipeline
instances to run untested parameter values. MLDebugger
repeats the above steps until the time budget is consumed
up or a definitive root cause is derived. Finally, the system
returns a set of concise explanations for the possible root
cause. Thus, the user can understand the debugging results
and interpret the possible reasons for failures in the ML
pipeline, and then act on them. BugDoc [94], [95], extending
from the MLDebugger, is designed to identify the abnormal
behavior in general computational pipelines that may be due to
errors in data, codes, or other actions in the pipeline.

Apart from the above works, there are also many papers
that investigate ML pipeline debugging in the ML and soft-
ware community, we refer interested readers to recent
works and workshops [3], [122], [154] in these communities.

5 RESEARCH CHALLENGES AND OPPORTUNITIES

In this section, we will discuss some research challenges
that are also relevant to data management problems on
machine learning, but are not yet well studied.

5.1 Data Preparation
Tuple-Level Data Discovery for ML. Existing tuple-level data dis-
covery approaches [153], [188] mainly focus on enriching the
dataset without considering the impact on downstream tasks.
Besides, although active leaning based methods [147] directly
benefit ML, they need expensive human label. Other methods
in the field of computer vision [153] just apply augmentation
operations on original data to generate new data. However,
existing data resources (e.g., data market, data lake) provide
opportunities to discover fresh training data from heteroge-
neous data pools. The challenge lies in how to judiciously
select beneficial data for ML from heterogeneous resources.
More General Data Cleaning for ML. Existing methods [64],
[69], [70], [85] of cleaning for ML mainly focus on cleaning a
certain type of dirty data (e.g., missing values) for a certain
type of ML model, especially the traditional model (e.g.,
SVM) rather than deep learning. Therefore, there is a lack of
more general methods that can judiciously select to clean
the data with all possible dirty types, with the goal of
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improving an arbitrary type of model. The challenge is how
to measure the influence of different dirty types on models,
especially the deep learning model.

Theoretical Guarantee for Data Labeling. As we know,
model performance close relationship with the labeling
quality [82], but we do not know the exact relation theoreti-
cally. To be specific, given a model performance require-
ment, if we can deduce which part of data needed to be
labeled and whether it is acceptable to use weak labels, fine-
grained and cost-effective data labeling can be achieved.
However, it is very challenging because the training process
between the data and final model is complicated.

Efficiency of Data Preparation. As a consensus, data preparation
takes 80% time in a data science pipeline [2], so it is significant to
improve the efficiency. First, data discovery is always time-con-
suming because it always incorporates complex join opera-
tions [28], [91]. Hence we can accelerate this process by some
heuristic solution like sampling. Data cleaning and labeling are
inefficient because they always rely on humans to solve the prob-
lem [82], so it is necessary to utilize more automatic approaches
in the pipeline. Another interesting direction is to take them as a
whole and remove some unnecessary, inefficient steps, consider-
ing the data characteristics and model performance.

5.2 Model Training & Inference

End-to-End ML Optimizer in DB.In this survey, we show how to
use DB techniques to optimize several steps in ML, including
feature selection [75], [79], [151], [174], model selection [68],
[116], [118], training and inference [30], [53]. But these methods
optimize separately without considering that they can work
together to achieve more optimization. It is challenging and
significant to conduct an end-to-end ML optimizer.

In-Database Deep Learning. It is very challenging to sup-
port ML inside the database, including feature engineering,
model selection and training. Existing works [30], [74] dis-
cussed in this survey mainly focus on learning traditional
ML models (e.g., logistic regression) in databases. But for
deep learning, the complicated neural architectures and a
number of parameters computation make it difficult to train
in database. Besides, it is also challenging to fully integrate
GPU into database for efficient deep learning.

Hybrid DB&ML Optimizer. Nowadays, both DB and ML
operators are needed in most real-world applications, so an
end-to-end hybrid ML&DB system is necessary, where a cus-
tomized operator is one of the most important modules. There
exist many approaches [163], [181], [183], [190], [191] to opti-
mizing the DB operators. For the hybrid optimizer, the execu-
tion order of ML and DB operators matters, where novel
cardinality/cost estimation strategies can be designed.
Besides, the ML operator is likely to incorporate multiple
tables (join), how to coordinate this type of join and the join of
DB queries is a challenge. Moreover, a customized declarative
language and appropriate storage engine should be designed.

Robust Learning for Systems. Existing ML algorithms do not
consider fault tolerance in systems. Especially in a distributed
environment, the failure of a process is likely to make the whole
task crash. Therefore, we can leverage the error tolerance
approaches of database systems to improve the robustness of
in-DB learning. To guarantee the business continuity under
predictable and unpredictable disasters, ML systems must
have fault tolerance and disaster recovery capabilities.
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5.3 Model Management

Streaming Model Management. Model training is an iterative
process, and a large number of parameters are generated
along with the training process and should be managed
carefully. Existing methods like [161] take these parameters
as static information, but in fact, they can be taken as the
streaming data. For example, we can study how to store
these models using a light overhead. Besides, whether mul-
tiple models generated during training can be integrated for
more accurate inference. What's more, there may be some
outliers in the streaming data that can provide beneficial
hints for performance improvement.

Model Decomposition and Reconstruction. Multiple models
are often built for an ML task. For example, given an image
classification task, many pre-trained models can be uti-
lized [129]. In this situation, one may ask that whether it is
feasible to automatically decompose each model to multiple
blocks, and then reconstruct from these blocks of different
models for the specific ML task. The challenges lie in which
granularity to decompose the model, how to select proper
decomposed blocks for the performance of the ML task and
how to conduct this process efficiently.

Systematic and Collaborative ML Pipeline Debugging. Current
practices for ML pipeline debugging usually separate data
and model debugging [27], [51], [108], and often debug in a
serial pipeline. In this way, some errors in certain steps may
propagate. Thus, how to debug the ML pipeline in a holistic
way is challenging. On the other hand, ML pipelines involve
participants of different roles, including ML/data scientists,
developers, operation and maintenance staff, and customers.
They have different rights, expertise, and perspective for the
ML pipeline. For example, the customers may complain about
and report the unexpected results, and the operation staffs
deliver the issues to the developers to find root causes and fix
them. Thus, how to enable collaborative ML pipeline debug-
ging is important in the production environment.

6 CONCLUSION

In this paper, we summarize the recent techniques on data
management for ML from three aspects. The first is data prepa-
ration, including data discovery, data cleaning and data label-
ing. The second one is the acceleration during ML training and
inference. The last one comprises steps after ML models are
built, including model storage & query, model diagnose,
deployment and pipeline debugging. We also propose some
research challenges and open problems in this field.
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