
GALVIS: Visualization Construction through Example-Powered
Declarative Programming

Leixian Shen
Tsinghua University

Beijing, China
slx20@mails.tsinghua.edu.cn

Enya Shen
Tsinghua University

Beijing, China
shenenya@tsinghua.edu.cn

Zhiwei Tai
Tsinghua University

Beijing, China
tzw20@mails.tsinghua.edu.cn

Yun Wang
Microsoft Research Asia

Beijing, China
wangyun@microsoft.com

Yuyu Luo
Tsinghua University

Beijing, China
luoyy18@mails.tsinghua.edu.cn

Jianmin Wang
Tsinghua University

Beijing, China
jimwang@tsinghua.edu.cn

ABSTRACT
Declarative programmatic approaches are an essential modality for
data visualization construction. Despite the powerful customiza-
tion ability, declarative programming requires users to create charts
from scratch, thus building a well-designed visualization is an effort-
consuming process. In this paper, we propose leveraging examples
to alleviate the problem. The use of examples plays a vital role in
visualization design. Users can be allowed to browse through de-
signs for inspiration and adapt them for their own visualizations. In
this demo, we directly leverage the entire Vega/Vega-Lite example
galleries as chart templates and introduce an authoring pipeline
to conveniently instantiate templates with the user’s data for ex-
tensible programmatic modifications. Finally, we build GALVIS,
an example-powered declarative programming tool for visualiza-
tion construction, enabling efficient declarative programming and
retaining the full spectrum of Vega/Vega-Lite characteristics.

CCS CONCEPTS
• Human-centered computing → Visualization systems and
tools.

KEYWORDS
Visual Analysis, Authoring, Example, Declarative Programming
ACM Reference Format:
Leixian Shen, Enya Shen, Zhiwei Tai, Yun Wang, Yuyu Luo, and Jianmin
Wang. 2022. GALVIS: Visualization Construction through Example-Powered
Declarative Programming. In Proceedings of the 31st ACM Int’l Conference
on Information and Knowledge Management (CIKM ’22), Oct. 17–21, 2022,
Atlanta, GA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3511808.3557159

1 INTRODUCTION
The high demand for visual data analysis has nourished a remark-
able series of visualization authoring tools both in industry (e.g.,
Tableau and Microsoft Power BI) and academia (e.g., Vega-Lite[1],

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9236-5/22/10.
https://doi.org/10.1145/3511808.3557159

Data illustrator[10], and Voyager[36]). They significantly reduce a
user’s efforts in creating visualizations. Among the tools, declar-
ative programmatic approaches are an essential modality and are
widely used to author data-oriented visualizations (e.g., Vega[26],
Vega-Lite[25], ggplot2[35], and Atom[18]). Compared with interac-
tive systems[21–23, 36, 38], declarative programmatic approaches
support remarkable expressive chart designs and allow low-level
modifications. However, writing declarative textual specifications is
still a troublesome and time-consuming process for most developers.
This modality assumes that users want to generate visualizations
that they already have in mind but users may not know how to
start. Moreover, it requires users to be familiar with the grammar
and write code line by line from scratch.

To reduce the complexity of programming, we believe that learn-
ing and adapting examples is an effective solution. Examples serve a
critical role in creative design practice[7] and are widely used in nu-
merous general authoring tools that provide visualization services.
Satyanarayan et al.[24] critically reflect on existing interactive au-
thoring tools and note that these systems aim to author rather than
design visualizations since they assume that users come with “a
specific chart design in mind". The use of examples can avoid the
blank canvas problem and guarantee ease of use[24]. Moreover, a
vision for a visualization authoring system is “allowing users to
browse through designs for inspiration, or adapt them for their
own visualizations"[27]. However, this vision has not been applied
to power declarative programming for visualization authoring.

In this paper, we build GALVIS (“GAL" is short for “Gallery"), a
novel example-powered declarative programming tool for data visu-
alization authoring, which directly leverages the entire Vega/Vega-
Lite example galleries as chart templates, and the templates can
be conveniently instantiated with the user’s data for extensible
interactive modifications. The design of GALVIS meets various
challenges, such as how to enable users to conveniently browse
through designs for inspiration, how to integrate programming
approaches without invading the syntax, how to retain the full
spectrum of Vega/Vega-Lite characteristics, and how to allow users
to flexibly modify the generated textual specification of visualiza-
tions. To address these issues, as shown in Figure 1, we introduce a
pipeline to effectively generate visualizations with the user’s data
from chart examples. Data is first decoupled from chart examples
with the help of Vega-Link (Section 3.1) to generate templates (A).
After loading data, the user can browse the examples for inspiration.

4975

https://doi.org/10.1145/3511808.3557159
https://doi.org/10.1145/3511808.3557159
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3511808.3557159

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Leixian Shen et al.

Data
Decoupling

Visual
Mapping

View
TransformationVisualization

Templates
New Visual
Structures Views

CB

D

User s Data

Entire Gallery of
Vega/Vega-Lite

E

A

Vega-Link

Human
Interaction

Interactive
Editing Tool

Figure 1: Visualization authoring pipeline from examples.

Figure 2: User interface of GALVIS.

When the user drags a template and drops it onto the assembly area
(D), the template is instantiated, and the system can automatically
map the data variables into the template (B). The specification code
is loaded in the interactive editing tool for extensible modifications
(D). After that, various view transformations can be performed on
the assembly area (C). The generated charts can also be reused as
new templates (E).

2 DEMONSTRATION
David is a professional data scientist who uses Vega and Vega-Lite
for visual analysis. He has recently used GALVIS for visualization
authoring. David has an open-ended task that requires him to ex-
plore the movies[9] and Hollywood stories[8] datasets. As shown
in Figure 2, after loading the data, data variables marked with data
types (temporal, nominal, quantitative, and ordinal) are presented
in (V1). David has no idea how to start the analysis, so he browses
the templates in GALVIS for inspiration. In (V2), a wide array of
templates are categorized hierarchically, and each template is rep-
resented as a thumbnail with a short description. When browsing
the “Repeat & Concatenation" category, the marginal histograms
catches his eyes, so he drags the template and drops it on the assem-
bly area (V3). GALVIS automatically maps the dataset’s variables to
the template and generates a visualization. David is satisfied with
the generated marginal histogram and drags it to the corner. Then,
he finds that the scatterplot with mean and standard deviation
overlay in the “Error Bars & Error Bands" category is interesting
and drags the template. The generated chart displays two variables,
Audience Score and Worldwide Gross, on the x-axis and y-axis, and
the text specification is loaded in the template editor (V4). David
wants to add a color channel with the Lead Studio, when he modifies
the code, an autocompletion widget appears to help him complete
input (like in Figure 5 (a)), and corresponding changes are reflected
on the visualization in real-time. After that, when browsing the
“Bar Chart" category, David gets inspired and wants to draw a bar
colored by Genre and labeled with IMDB Ratings. He starts with a

2005 2006 2007 2008 2009 2010
date

0

200

400

600

800

pr
ic

e

1960 1980 2000 2020
Year

0

000,200

000,400

000,600

000,800

000,000,1

G
DP

Year GDP GDP per capita
2020 1015986.2 72000
2019 986515.2 70078
2018 919281.1 65534
2017 832035.9 59592
2016 746395.1 53783
2015 688858.2 49922
…… …… ……

(a) Visualization generation without any user modifications

d
a
ta

Modified by the user in the
interactive editing tool

Generation

Template

Modification

sa
v
e

Interactive Editing ToolOpen-Source Specification

copy

modify

(b) Import a new template and create a chart with minor user modifications

Figure 3: Convert examples to customized visualizations.

similar bar chart template with labels and modifies the specification
with the interactive template editor. David finds that using GALVIS
largely reduces the cost of time compared with writing code from
scratch. After creating the three charts, David freely resizes, posi-
tions, and constructs their layouts on the assembly area with the
help of the extension editor (V5), which allows users to fine-tune
auxiliary properties (e.g., data sources, chart size, positions, margin,
etc.). Finally, David saves () and previews () the dashboard by
clicking the function buttons in the tool panel (V6).

David has another task to analyze the GDP data[17]. He selects
a line chart template and generates a visualization without any
modifications (Figure 3 (a)). This chart can show the trend of GDP,
but David thinks it is a bit monotonous. He remembers that he
previously encountered a dual-axis chart when surfing the Internet,
so he copies the code. As shown in Figure 3 (b), he first uploads the
dataset to GALVIS and pastes the code in the template editor. Then
he clicks the upload chart () button to save the focused chart as a
personal template. After that, he uploads the GDP data and drags
the personal template to the assembly area. However, the generated

4976

GALVIS: Visualization Construction through Example-Powered Declarative Programming CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 1: Three types of template in GALVIS.
Template
Type Specification Default

number Description

Common Vega-Lite 178 common statistical graphics
Senior Vega 89 relatively complicated but powerful
Personal Vega/Vega-Lite X the user’s customized charts
* X indicates that the user’s customized charts can be reused as templates.

chart is a little strange as the area chart displays two variables on
the y-axis (The template originally shows maximum and minimum
temperatures in a weather dataset), so he uses the template editor
to remove the “y2" encoding channel and changes the mark to “bar".
As a result, the modified chart can clearly display the GDP and
GDP per capita information. Finally, Davids makes some textual
changes to the title and axis.

3 GALVIS
This section will discuss challenges we encounter when designing
GALVIS and how we address the problems.

3.1 Framework
Conceptual frameworks play a significant role in visualization cre-
ation. Inspired by related works[15, 23, 34, 38], we choose Vega
and Vega-Lite to specify visualizations, which are widely used, ex-
pressive enough, and more intuitive to understand. In addition, the
original textual specifications of examples are associated with old
data, which are not convenient for editing by the user. To templatize
Vega/Vega-Lite-based charts and link chart templates and the user’s
data, we design a scheme named Vega-Link, which decouples data
from visualization specifications and involves auxiliary primitives
for extensive modifications (e.g., dashboard design). Vega-Link and
Vega/Vega-Lite supplement each other. Figure 2 (V5) is an exten-
sion editor powered by Vega-Link that displays the structure of
Vega-Link. The primitives of Vega-Link can be divided into three
categories: (1) Basic options: these options are associated with the
basic properties of the chart, including author, name, description,
and theme, where name is the unique identifier of the chart, and the
supported themes[33] are the same with Vega/Vega-Lite (e.g., Excel,
vox, dark, and google charts); (2) Data options: they focus on how
to link the chart template with the user’s data, as well as refreshing
the data sources, including Data, Update, and Refresh; (3) Position
options: they relate to the position information of charts, which are
helpful for view transformation, including ChartPosition, ChartSize,
PageSize, and Margin. More details will be discussed, along with
the explanation of GALVIS’s design logic, in the following sections.

3.2 Example as Template
Some works abstract existing programmatic languages to create
chart templates, which is time-consuming for producing a new
template and may increase the learning curve. Instead, GALVIS
fully retains the characteristics of Vega/Vega-Lite, and the design of
Vega-Link allows easy templatization of existing charts. Benefiting
from the efficient templatization mechanism, GALVIS can rapidly
integrate a large number of templates. By default, GALVIS supports
267 chart templates, as shown in Figure 2 (V2), which derive from
the Vega[31] and Vega-Lite[32] example galleries as well as their
extensions during our visualization practice. The templates are

Figure 4: GALVIS can deal with multi-source datasets and
retain the interactivity ability of Vega/Vega-Lite.

displayed with a hierarchical classification for easy reference. First,
all templates are divided into three categories: common, senior,
and personal (Table 1). Next, the common and senior templates are
aligned to the same directories in Vega/Vega-Lite examples, which
is convenient for users to find what they expect. The number of
templates integrated in GALVIS by default is larger than existing
template-based tools, such as RAWGraphs[14] (29), Ivy[15] (40),
Excel (58), and Flourish[6] (150). The user’s customized charts can
also be directly reused as templates in GALVIS.

3.3 Data Decoupling
For instantiation of templates, thefirst challenge is how to bridge
the gap between the chart template and the user’s data, es-
pecially multi-source datasets. In the data model of Vega and
Vega-Lite, they generally load data through the values and url prim-
itives. However, values is only appropriate for inline data, and url
does not work for our database. To templatize existing visualization
examples and allow easy visualization authoring with the user’s
data, we believe that data should be decoupled from the speci-
fication. To this end, we redefine a data primitive in Vega-Link,
which retains the characteristics of Vega/Vega-Lite and adapts to
our database, allowing users to import both single dataset andmulti-
source datasets of their own. As shown in Figure 2 (V3, V4), the
bar chart analyzes a single dataset[9]. GALVIS first identifies the
data primitive in the chart template and then makes correspond-
ing modifications. In detail, the new url in Vega-Link (see Figure
2 (V5)) corresponds to the name of the user’s dataset, which can
be seen in Figure 2 (V1). Users can easily switch the dataset by
directly changing the url, and the data variables in the template
editor will be updated automatically. The name and id of the dataset
are automatically generated to reference the dataset in the tem-
plate editor (see Figure 2 (V4)). For multi-source datasets, Figure 4
visualizes the flare dataset[4] and its dependency data[5] with an
edge bundling chart to find dependencies between classes. In the
original Vega-powered visualization template, there are four data
sources as shown in the template editor, where tree and dependencies
are source datasets, while leaves and selected are derived through
“transform" operations. In such cases, GALVIS can automatically
identify the source data and present them in the extension editor,
thus avoiding duplicate data loading.

4977

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Leixian Shen et al.

Users can also import external data from the database or through
URL in GALVIS. In that case, the remote data source may update at
any time (especially time series data). So refreshing data in the
visualization is another important task. Benefiting from the
decoupling of data from the specification, data refreshing can be
conveniently performed at the data level. We design a refresh option
in Vega-Link, which supports automatic data refreshing based on
various configurations. First, users can choose to refresh the entire
dashboard or a specific visualization or dataset. Second, there are
two kinds of refresh patterns. One is to refresh at a fixed time, and
the other is to refresh after a fixed time interval. Third, GALVIS
supports different refresh types: increase, difference, and full.

3.4 Visual Mapping
After loading datasets, an important problem is how to map
data variables into the visual channels properly and auto-
matically. For this problem, we design a rule-based approach,
when a template is dragged by the user and dropped on the assem-
bly area (Figure 2 (V3)), the algorithm works. There is a consensus
that data type is a vital characteristic for visualization creation,
and numerous systems have developed design rules based on data
types[2, 11, 16, 29, 30]. Inspired by these work, we recursively
search the template specification for the data “field" primitive with
its corresponding data “type". Then, data variables with the same
type will be adopted to replace the original data “field", as well
as the title of axis. Variables that have already been used will no
longer be used to avoid duplication. If there are no variables of the
same type as required by the template, the system will compromise
to select a variable of a similar type. For instance, if the template
requires a nominal variable, but there is no corresponding variable
in the dataset, the system will continue to look for ordinal ones,
followed by quantitative, and finally temporal.

3.5 View Transformation
Users can create multiple visualizations on the assembly area, as
shown in Figure 2 (V3). An important problem is how to allow
users to design theirmultiple views freely and conveniently.
GALVIS provides a What You See Is What You Get (WYSIWYG)
multi-view design experience by allowing users to interactively
drag the template and move the visualizations for view transforma-
tions. The ChartPosition and ChartSize defined in Vega-Link will
be updated synchronously. GALVIS also presents PageSize (width
and height) for reference and allows for fine-grained control of the
aforementioned options. The charts can also be placed on top of
each other, enabling more expressive designs.

3.6 Human Interaction
Human interactions with the interface feed back into the pipeline.

Interactive Display: Interactivity is an essential characteristic
of visual analysis[20]. Vega and Vega-Lite are designed to enable
rapid specification of interactive charts, and their galleries incor-
porate numerous interactive displays. However, interactivity has
received relatively less attention in current Vega/Vega-Lite-powered
authoring tools. An important issue we need to address is to
retain the interactivity ability of Vega/Vega-Lite, allowing
users to explore the chart interactively. We generally divide

(b) parameter extension(a) option configuration (c) free configuration

In
te

ra
ct

iv
e
 e

d
it

in
g

E
rr

o
r

A
le

rt

Figure 5: Template editor with different freedom degrees.

interactive technologies into two classes: one is “tooltip", When the
mouse hovers on a particular data point of the chart, the details will
be displayed. The system will add the tooltip primitive to the chart
and set it to true if the template does not include it. The other is
“select", params in Vega-Lite and signals in Vega are dynamic vari-
ables that drive interactive updates. They can be complex selections
that map user input (e.g., mouse click, brush, drag, and zooming)
to data queries, which are used for data exploration and designing
interactive multi-view displays. As shown in Figure 4, they can
also optionally be bound to input widgets (e.g., slider, drop-down
menus, and checkboxes). Benefiting from the design logic of the
system, GALVIS can retain this feature intact.

Interactive Editing Tool: Though users can conveniently cre-
ate simple visualizations through drag-and-drop interactions, post-
generation modifications still cannot be ignored. A vital problem
is how to enable users to modify the generated charts flexi-
bly. To this end, we design an interactive editing tool that consists
of two parts: a template editor (see Figure 2 (V4)) for modifying vi-
sualization components and a Vega-Link-powered extension editor
(see Figure 2 (V5)) for configuring auxiliary properties. Considering
users with varying-level visualization skills, three different degrees
of freedom are provided (Figure 5). The option configuration mode
allows users to perform option-level editing rapidly, which is novice-
friendly. The autocompletion and warning (!) mechanism can help
users effectively complete input. The parameter extension mode
extends the option configuration mode with the support to add and
remove parameters. Users can add parameters in the three forms
by clicking the addbox () on the left. The free configuration mode
allows users to freely modify and even rewrite the text, which can
be used to import open-source specifications as personal templates.

4 CONCLUSION
In this paper, we describe howGALVIS powers declarative program-
ming with example galleries and enables an efficient and extensible
visualization authoring pipeline. Our target users are declarative
programming developers. We believe that GALVIS can help facil-
itate their coding process. In addition, novices can also find an
appropriate way of visualization creation in GALVIS (e.g., using
templates). GALVIS can even be used as an effective tool for learn-
ing Vega and Vega-Lite. In the future, we will explore more intel-
ligent functionalities (e.g., recommendation[3, 19, 37] and natural
language interface[12, 13, 28]).

4978

GALVIS: Visualization Construction through Example-Powered Declarative Programming CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

REFERENCES
[1] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3: Data-Driven

Documents. IEEE Transactions on Visualization and Computer Graphics 17, 12
(2011), 2301–2309.

[2] Çağatay Demiralp, Peter J. Haas, Srinivasan Parthasarathy, and Tejaswini Peda-
pati. 2017. Foresight: Recommending visual insights. Proceedings of the VLDB
Endowment 10, 12 (aug 2017), 1937–1940.

[3] Rui Ding, Shi Han, Yong Xu, Haidong Zhang, and Dongmei Zhang. 2019. Quick-
insights: Quick and automatic discovery of insights from multi-dimensional data.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD’19. ACM, Amsterdam, The Netherlands, 317–332.

[4] Flare dataset. https://vega.github.io/editor/data/flare.json. 2022.08.
[5] Flare-dependencies. https://vega.github.io/editor/data/flare-dependencies.json.

2022.08.
[6] Flourish. https://flourish.studio. 2022.08.
[7] Scarlett R. Herring, Chia Chen Chang, Jesse Krantzler, and Brian P. Bailey. 2009.

Getting inspired!: Understanding how and why examples are used in creative
design practice. In Proceedings of CHI Conference on Human Factors in Computing
Systems, CHI’19. ACM, 87–96.

[8] Hollywood Most Profitable Stories dataset. https://www.kaggle.com/
brendan45774/hollywood-most-profitable-stories. 2022.08.

[9] IMDB movies datasets. https://vega.github.io/editor/data/movies.json. 2022.08.
[10] Zhicheng Liu, John Thompson, Alan Wilson, Mira Dontcheva, James Delorey,

Sam Grigg, Bernard Kerr, and John Stasko. 2018. Data illustrator: Augmenting
vector design tools with lazy data binding for expressive visualization authoring.
In Proceedings of CHI Conference on Human Factors in Computing Systems, CHI’18.
ACM, 1–13.

[11] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. Deepeye: towards auto-
matic data visualization. In Proceedings of the 34th IEEE International Conference
on Data Engineering, ICDE’18. IEEE, Paris, France, 101–112.

[12] Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin.
2021. Synthesizing Natural Language to Visualization (NL2VIS) Benchmarks
from NL2SQL Benchmarks. In Proc. 2021 Int. Conf. Manag. Data, SIGMOD’21.
ACM, Virtual Event, 1235–1247.

[13] Yuyu Luo, Nan Tang, Guoliang Li, Jiawei Tang, Chengliang Chai, and Xuedi Qin.
2022. Natural Language to Visualization by Neural Machine Translation. IEEE
Transactions on Visualization and Computer Graphics 28, 1 (jan 2022), 217–226.

[14] Michele Mauri, Tommaso Elli, Giorgio Caviglia, Giorgio Uboldi, and Matteo Azzi.
2017. RAWGraphs: A visualisation platform to create open outputs. In Proceedings
of the 12th Biannual Conference on Italian SIGCHI Chapter, CHItaly ’17. ACM,
1–5.

[15] Andrew M McNutt and Ravi Chugh. 2021. Integrated Visualization Editing via
Parameterized Declarative Templates. In Proceedings of CHI Conference on Human
Factors in Computing Systems, CHI’21. ACM, 1–14. arXiv:2101.07902

[16] Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin, Adam M. Smith,
Bill Howe, and Jeffrey Heer. 2019. Formalizing Visualization Design Knowledge
as Constraints: Actionable and Extensible Models in Draco. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (2019), 438–448.

[17] National data of China. https://data.stats.gov.cn/login.htm. 2022.08.
[18] Deokgun Park, Steven M. Drucker, Roland Fernandez, and Niklas Elmqvist. 2018.

Atom: A Grammar for Unit Visualizations. IEEE Transactions on Visualization
and Computer Graphics 24, 12 (2018), 3032–3043.

[19] XinQian, RyanARossi, FanDu, Sungchul Kim, Eunyee Koh, SanaMalik, Tak Yeon
Lee, and Joel Chan. 2021. Learning to Recommend Visualizations from Data. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data

Mining, KDD’21. ACM, Virtual Event, 1359–1369.
[20] Xuedi Qin, Yuyu Luo, Nan Tang, and Guoliang Li. 2020. Making data visualization

more efficient and effective: a survey. The VLDB Journal 29, 1 (2020), 93–117.
[21] Donghao Ren, Tobias Höllerer, and Xiaoru Yuan. 2014. IVisDesigner: Expressive

interactive design of information visualizations. IEEE Transactions on Visualiza-
tion and Computer Graphics 20, 12 (2014), 2092–2101.

[22] Donghao Ren, Bongshin Lee, and Matthew Brehmer. 2019. Charticulator: Interac-
tive Construction of Bespoke Chart Layouts. IEEE Transactions on Visualization
and Computer Graphics 25, 1 (2019), 789–799.

[23] Arvind Satyanarayan and Jeffrey Heer. 2014. Lyra: An interactive visualization
design environment. Computer Graphics Forum 33, 3 (2014), 351–360.

[24] Arvind Satyanarayan, Bongshin Lee, Donghao Ren, Jeffrey Heer, John Stasko,
John Thompson, Matthew Brehmer, and Zhicheng Liu. 2019. Critical Reflections
on Visualization Authoring Systems. IEEE Transactions on Visualization and
Computer Graphics 26, 1 (2019), 1–11. arXiv:1907.13568

[25] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017), 341–350.

[26] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2016. Reac-
tive Vega: A Streaming Dataflow Architecture for Declarative Interactive Visual-
ization. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2016),
659–668.

[27] Arvind Satyanarayan, KanitWongsuphasawat, and JeffreyHeer. 2014. Declarative
interaction design for data visualization. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software and Technology, UIST’14. ACM, 669–678.

[28] Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai
Zhang, Zhiwei Tai, and Jianmin Wang. 2022. Towards Natural Language Inter-
faces for Data Visualization: A Survey. IEEE Transactions on Visualization and
Computer Graphics (sep 2022), 1–20.

[29] Leixian Shen, Enya Shen, Zhiwei Tai, Yiran Song, and Jianmin Wang. 2021.
TaskVis: Task-oriented Visualization Recommendation. In Processings of Euro-
graphics Conference on Visualization, EuroVis’21 Short Paper. Eurographics.

[30] Arjun Srinivasan, Steven M. Drucker, Alex Endert, and John Stasko. 2019. Aug-
menting visualizations with interactive data facts to facilitate interpretation and
communication. IEEE Transactions on Visualization and Computer Graphics 25, 1
(2019), 672–681.

[31] Vega Examples. https://vega.github.io/vega/examples/. 2022.08.
[32] Vega-Lite Examples. https://vega.github.io/vega-lite/examples/. 2022.08.
[33] Vega/Vega-Lite themes. https://github.com/vega/vega-themes. 2022.08.
[34] Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and Amy J.

Ko. 2021. Falx: Synthesis-Powered Visualization Authoring. In Proceedings of CHI
Conference on Human Factors in Computing Systems, CHI’21. ACM, 1–15.

[35] Hadley Wickham. 2010. A Layered Grammar of Graphics. Journal of Computa-
tional and Graphical Statistics 19, 1 (2010), 3–28.

[36] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,
Anushka Anand, Jock MacKinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager 2:
Augmenting visual analysis with partial view specifications. In Proceedings of CHI
Conference on Human Factors in Computing Systems, CHI’17. ACM, 2648–2659.

[37] Mengyu Zhou, Qingtao Li, Xinyi He, Yuejiang Li, Yibo Liu, Wei Ji, Shi Han, Yining
Chen, Daxin Jiang, and Dongmei Zhang. 2021. Table2Charts: Recommending
Charts by Learning Shared Table Representations. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD’21. ACM,
Virtual Event, 2389–2399.

[38] Jonathan Zong, Dhiraj Barnwal, Rupayan Neogy, and Arvind Satyanarayan. 2021.
Lyra 2: Designing interactive visualizations by demonstration. IEEE Transactions
on Visualization and Computer Graphics 27, 2 (2021), 304–314.

4979

https://arxiv.org/abs/2101.07902
https://arxiv.org/abs/1907.13568

	Abstract
	1 Introduction
	2 Demonstration
	3 GALVIS
	3.1 Framework
	3.2 Example as Template
	3.3 Data Decoupling
	3.4 Visual Mapping
	3.5 View Transformation
	3.6 Human Interaction

	4 Conclusion
	References

