
RW-Tree: A Learned Workload-aware Framework
for R-tree Construction

Haowen Dong1, Chengliang Chai1∗, Yuyu Luo1, Jiabin Liu1, Jianhua Feng1, Chaoqun Zhan2
1Department of Computer Science, Tsinghua University, 2Alibaba

{dhw21@mails.,ccl@,luoyy18@mails.,liujb19@mails., fengjh@}tsinghua.edu.cn, lizhe.zcq@alibaba-inc.com

Abstract—R-tree is a popular index which supports efficient
queries on multi-dimensional data. The performance of R-tree
mostly depends on how the tree structure is built if new data
instances are inserted, which has been studied for years. Existing
works can be categorized into two groups. One is the bulk-loading
approaches that insert data instances in batch, but they cannot
support real-time insertion. Hence, our focus is on the other
one that inserts each data instance individually, and thus fresh
data can be instantly queried. However, existing methods do
not consider the workload information, which leads to limited
potential optimization opportunity. Therefore, it is important
to study workload-aware R-tree construction for efficient multi-
dimensional data access. There are several challenges. First, how
to represent the query workload is a challenge. Second, given
a workload, it is challenging to accurately measure the benefit
of a data insertion choice. Third, both range queries and kNN
queries should be considered in the workload.

To address these challenges, we propose a novel framework
that leverages a learning-based method to solve the workload-
aware R-tree construction problem. First, by extracting the query
workload features, we learn a distribution for the workload
using the space partition. Second, considering the distribution, we
design a cost model to describe the benefits (i.e., query execution
time) of different insertion choices and select the best one. Third,
we convert the kNN queries to range search ones, so as to support
the workload including both types of queries. Experimental
results show that on OpenStreetMap real datasets, compared
with baselines, we improve the query efficiency by 1.17×.

I. INTRODUCTION

R-tree is a popular tree data structure used for spatial

data, i.e., indexing multi-dimensional data like geographical

coordinates, rectangles or polygons, which are represented by

hierarchical minimum bounding rectangles (MBRs). The query

efficiency mostly depends on the structure of an R-tree, and

most research works [3], [4], [7], [14]–[16], [31] in this field

focus on how to construct a well-organized R-tree leveraging

the operation of data insertion.

Limitations of existing methods. Generally speaking, there

are two lines of works to address this problem. One is the bulk-

loading approaches [1], [2], [17], [19], [23], [28] that directly

pack all data instances to be inserted into leaf nodes. The

limitation is that they cannot support real-time data insertion,

and thereby one cannot instantly query the data instances that

have just been inserted. Hence, in this paper, we focus on the

other line of works [4], [14]–[16], [31] that update the R-tree

∗ Chengliang Chai is the corresponding author.

by inserting each data instance individually, and thus one can

access fresh data at any time. However, current works in this

line just leverage heuristic methods, e.g., inserting an data

instance based on the area enlargement of an MBR without

considering the workload characteristics, and thus the potential

optimization opportunity is limited. The reason is that the

workload in real world always follows a certain distribution.

Given such a workload, we should build an R-tree such that

queries following the same distribution as the workload can

be efficiently executed on the tree. Therefore, in this paper, we

aim to optimize the R-tree construction by taking the historical

query workload information into consideration.

Challenges. At a high level, there are several challenges for

the problem of workload-aware R-tree construction. First, how

to capture the features of the query workload and represent

it for effective and efficient optimization is the first main

challenge (C1). Second, given a workload, how to measure the

benefit of an insertion choice to the workload is challenging

(C2). Traditional measurements (e.g., area enlargement) are

not appropriate because they cannot well represent the query

execution time. Third, spatial queries are not limited to the

range search query, and kNN query is also a significant one,

and thus how to consider both queries in the workload is

another challenge (C3).

Our proposed method. To address the above challenges, we

propose a learned workload-aware framework, RW-tree that

builds the R-tree that supports efficient spatial data access

considering the workload information. To be specific, we first

extract several important features from the query workload

and learn a distribution to represent the workload, such that

the characteristics of the workload are well captured when

building the R-tree (for C1). Then, given the workload rep-

resentation, we need to measure how a data insertion choice

performs on the workload, so as to discover the best choice.

To this end, we propose a cost model as the measurement,

which can accurately approximate the real query execution

time (for C2). Third, when the workload contains both range

search queries and kNN queries, we propose to transform

kNN queries to the former ones and leverage learned data

distribution to answer these queries (for C3).

Contributions. To summarize, we make the following contri-

butions in this paper.

(1) We propose a learned workload-aware framework for R-

2073

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00201

20
22

 IE
EE

 3
8t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 D
at

a 
En

gi
ne

er
in

g 
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
02

01

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 



(a) An example of R-tree with query workload. (b) An example of data insertion using heuristics. (c) An example of workload-aware data insertion

Fig. 1. Examples of data insertion strategies.

tree construction, so as to optimize the query efficiency

considering the workload information.

(2) We learn the workload distribution through space par-

tition, and propose a cost model to effectively and ef-

ficiently capture the performance of each data insertion

choice based on the learned distribution.

(3) We also support to optimize the R-tree built based on the

workload mixed with range search and kNN queries, by

transforming the kNN queries to range ones.

(4) Experimental results show that our method significantly

outperforms existing R-tree construction approaches, im-

proving the efficiency by 1.17× in real-life datasets.

Paper organization. First, we define the typical data insertion

problem and introduce the cost model in Section II. Then

we introduce our workload-aware framework to address the

proposed problem using the cost model in Section III. Next,

we introduce model training and inference in Section IV. In

Section V, we illustrate how to support kNN queries in the

workload. We compare our method with other state-of-the-art

methods in Section VI. We review related works in Section VII

and conclude in Section VIII.

II. PRELIMINARY

A. Problem Definition

As we know, R-tree is a data structure that groups nearby

data instances, represents them as an MBR, and organizes

these MBRs as a balanced search tree. Given an R-tree, the

searching algorithm is rather simple, which uses the bounding

boxes to decide whether to search inside a subtree (i.e., an

MBR) or not. Therefore, the tree structure has a large impact

on the search performance, which is determined by the data

insertion operation. To insert a data instance, the tree is

traversed recursively from the root node, where two key steps

should be considered iteratively.

(1) [Choosing the insertion subtree.] During the recursive

process, at each tree level, we have to choose which subtree

the node should be inserted into. Then this step repeats until

reaching a leaf node.

(2) [Splitting an overflow node.] When the data instance is

inserted, causing a node to exceed the storage limitation, we

should split this node into two parts or re-insert some data

instances.

Limitations of typical heuristics. To address the above steps,

traditional strategies adopt some heuristics considering the

area of MBR. Taking the typical R-tree [16] as an example,

for choosing the subtree, if an instance is to be inserted, it

will select the node with the minimal area enlargement. For

overflow treatment, it splits an overflow node based on the

distance between children nodes in the area. However, the

above heuristics do not consider the characteristics of query

workloads, leading to the performance degradation.

Example 1: For example, Fig. 1 (a) shows an R-tree asso-

ciated with a historical query workload, denoted by dashed

rectangles. The R-tree is shown in colored solid rectangles.

We can observe that the queries are dense in the upper part of

the spatial space, and sparse in the lower part. Suppose that

R15 is going to be inserted into the R-tree, and firstly, we

should choose from R21 and R22. If we adopt the traditional

method as shown in Fig. 1 (b), R15 will first be inserted into

R21 because the area enlargement of R21 is less than that of

R22. However, considering the query distribution, if we insert

into R21, given such a workload, q1, q2 and q3 will lead to

extra scans because they have overlap with R21. If we insert

into R22, only q4 needs an extra scan, which is more efficient

than the choice of inserting into R21.

22074

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 



Normalizing C(T, q)C(T, q)

N
or

m
al

izi
ng

 E
xe

cu
tio

n 
Ti

m
e 

of
 qq

Fig. 2. Relationship between C and query execution time.

Workload-aware data insertion. Based on the example, we

can see that considering the query workload, simply relying

on the area enlargement to choose the subtree for insertion

may not be a good choice. Ideally, given a query workload, a

data instance, and several candidate MBRs to be inserted, if

we can accurately obtain the performance change of the data

instance being inserted into each MBR for the workload, we

naturally have the ability to select the “best” MBR that leads

to the most performance improvement to insert. However, the

performance change is rather hard to derive because (1) the

entire distribution of the query workload (including the future)

is hard to predict, and (2) the performance is unavailable unless

the workload is executed. For the former one, we make a

reasonable assumption that the workload remains stable over

a long period of time, and thus it is feasible to build the R-tree

based on a historical workload. For the latter one, we propose

to use a learning-based method to estimate the performance

change for data insertion.

Remark. The above example mainly discusses the limitation of

heuristic method w.r.t. the choosing subtree step. For overflow

treatment, the heuristic method based on the distance is also

hard to find the optimal solution for the query workload (we

omit the example due to the space limitation). But fortunately,

both steps can be solved by the learning-based method that

will be introduced later.

Cost: # of scanned nodes. For the widely-used range search

query (dashed rectangles in Fig. 3), the search algorithm is

to recursively scan the nodes whose MBRs overlap with the

query MBP. Note that R-tree is balanced, so the scanning time

on each node is similar, and thereby the number of scanned

nodes is proportional to the query execution time. Since the

actual execution time of a query in workload is hard to obtain,

we propose to use the total number of scanned nodes (we also

name the scanned number as cost, denoted by C) during the

entire workload as a measurement of the performance. Thus,

optimizing the cost is basically to optimize the execution time,

as shown in Fig. 2. C(T, q) is the actual number of nodes that

scanned during the execution process of query q on R-tree T .

Example 2: As shown in Fig. 3, we consider a workload

Fig. 3. An example of the cost metric

W {q1, q2, q3} and a R-tree T rooted at the node RT (RT is

rectangle including all nodes and not shown in the Figure).

The node of R-tree is {RT , R16, R17, · · ·R22} and the data is

{R1, R2, · · · , R15}. For the search of q1, RT , R17, R21, R22

overlap with the q1 and each of them will be scanned once,

so the cost of {q1} is 4, denoted by C(q1) = 4. For the whole

workload, RT and R21 will be scanned in q1, q2, q3, R22 and

R17 will be scanned in q1 and R19 will be scanned in q2, while

other internal nodes will not be scanned. Hence, the total cost

of the entire workload executing on the tree is 3+3+1+1+1 =
9, denoted by C(T,W ) = 9.

Substree Choosing

Overflow Splitting

R4 R5

R7 R8

R1 R2 R3 R6 R6 R4 R5

R7 R8

R1 R2 R3

R7 R8 R9

R4 R5R1 R2 R3 R6

R7 R8 R9

R4 R5 R2 R3R1 R6R4 R5R1 R3

R7 R8 R9

R2 R6

R6+
R4 R5

R7 R8

R1 R2 R3

T

T ′
1

T ′
2 T ′

3 T ′
4

(a) An example of candidate selection

T ′
1 T ′

2 T ′
3 T ′

4

R-Tree CandidatesT

Cost 
ModelQuery Workload W

q1, q2, q3, ..., qn

Insertion Strategy T ′
1

arg minT ′C(T ′,W )
Costs

C(T ′
1,W ) C(T ′

2,W )

C(T ′
3,W ) C(T ′

4,W )

(b) An example of the insertion strategy

Fig. 4. An example of insertion optimization problem

32075

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 



+ Learn 
Query Distribution

kNN Query Approximation

Range Query Workload

Probability Density
P (xq, yq, wq, hq)

+

Substree
Choosing

Overflow 
Splitting

R9

R7 R8T

R4 R5R1 R2 R3 R6 R4 R5

R7 R8

R1 R2 R3 R6

R7 R8

R4R1 R2 R6

T ′
1

Learned Cost Model∫∫∫∫
A(n)

P (xq, yq, wq, hq)dρ

Le
ar

n 
Co

st 
M

od
el

Da
ta

 In
se

rti
on

kNN Query

Inputed Query Workload

R9

R10

R3 R5 R9

Offline

Online

o

d(o)

Fig. 5. Overall Framework of RW-tree

Insertion optimization using the cost. Recap that given an

R-tree T as well as a query workload W , C(T,W ) measures

how T performs over the workload W . Then, given a data

instance R to be inserted into T , different choices of the above

two steps (i.e., subtree choosing and node splitting) will lead

to different candidate tree structures, denoted by the set T =
{T ′}, where each T ′ denotes another R-tree in which d has

been inserted. Hence, C(T ′,W ) denotes the cost of T ′ over

the workload W .Then, we can formally propose the insertion

optimization problem as follows.

Definition 1: Given W , T and a data instance R to be

inserted, a number of R-tree candidates can be generated,

denoted by T = {T ′}, where each element corresponds to an

insertion strategy (including choose which subtree and how to

the split overflow node). The insertion optimization problem

is to choose the strategy that leads to the least cost, i.e.,

argminT ′ C(T ′,W ).
Example 3: As Fig. 4(a) shows, considering an R-tree T

(minimal capacity of a node is m = 2 and the maximal

capacity is M = 3) and a data instance R6, the task is to

insert R6 into T . To this end, we should first choose the

subtree to insert from R7 and R8. If R7 is chosen, we have

T ′
1. If R8 is chosen, the node will have 4 children and need

to split. There are C2
4/2 = 3 splitting choices, corresponding

to T ′
2, T ′

3 and T ′
4. Hence, T = {T ′

1, T
′
2, T

′
3, T

′
4}. Then given a

query workload W , the optimization problem is to compute the

argminT ′ C(T ′,W ) using a cost model as shown in Fig. 4(b).

At the following, we will show the difficulty of computing

the cost, and then overview our proposed framework, where a

learning-based model for cost computation is proposed.

III. FRAMEWORK

In this section, we first introduce the challenges with respect

to the above problem, and overview the RW-tree framework

to solve the problem (Section III-A). Then we briefly introduce

two key components (learned cost model and kNN approxima-

tion) in our framework in Section III-B and III-C respectively.

A. Overview of RW-tree

Challenges. First, based on the problem definition, in order to

choose the most cost-effective strategy, we need to compute

C(T ′,W ) for each R-tree candidate. However, given W and

T ′, it is non-trivial to compute the cost, i.e., the number of

scanned nodes during the workload execution. The reason

is that computing the exact number is equivalent to really

executing the query, which is rather time-consuming. Hence,

the first challenge is how to estimate the cost efficiently and

accurately.

Second, to obtain the optimal strategy, we also need to ex-

plore the search space of R-tree candidates, i.e., |T |. However,

|T | is proportional to the number of leaf nodes of the R-tree

when only choosing subtree is needed. When there has to be

the splitting operation, the search space will be much larger

(an example is given in Fig. 4(a)). Therefore, how to efficiently

explore the search space is another challenge.

Third, the above examples only discuss the workload of

range search queries. Besides, the k Nearest Neighbor (kNN)

query is also a typical query type in spacial data. Hence,

when the workload contains kNN queries, how to adapt our

framework to build an R-tree for such workload, such that

queries in the workload can be efficiently executed.

RW-tree Framework. The overall framework of RW-tree
is shown in Fig. 5. First, given the input T , W and R, instead

of enumerating all R-tree candidates in T , we adopt the typical

best-first strategy to explore the search space of R-tree. To be

specific, we maintain a priority queue while traversing T from

top to bottom, and first explore the subtree that is likely to lead

to a tree structure with a low cost, so as to reduce the search

space.

During the best-first search, given the query workload W ,

we build a learned cost model to estimate the cost of an R-

tree candidate, i.e., C(T ′,W ). To be specific, for training,

the model learns the distribution of queries in W . Then, for

42076

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 



inferring the cost of T ′, as an R-tree consists of a number of

nodes, we take as input a node as well as W , and predicts the

number of scanned times of this node when executing queries

in W using integration over the learned query distribution.

Then C(T ′,W ) can be computed by summing the number

of scans of all nodes in T ′. We will overview this step in

Section III-B.

For kNN queries, we propose to transform them to range

queries, and use the above trained model to construct the R-

tree (see Section III-C for overview).

B. Learned Cost Model

In this part, we will overview how to train a cost model to

estimate the cost of executing a query workload W over an

R-tree T ′, and then introduce how to use it.

Model Training. At a high level, to achieve the workload-

aware spatial data insertion, we have to capture the query

distribution, which is significant for estimating the cost. Hence,

in this part, we take as input the workload W and learn its

distribution. Since each query q in the workload corresponds

to an MBR, denoted by B(q), which can be represented by the

coordinate of the center (xq, yq), the width (wq) and height

(hq) of the MBR of search boundary. Therefore, the query

distribution can be represented in the form of 4-dimension

probability density P (xq, yq, wq, hq). We will show the details

of learning the distribution in Section IV.

Model Inference. Recap that C(T ′,W ) is computed by sum-

ming the number of scans of all nodes in T ′. In this part,

we take as input the query distribution and nodes in R-tree

to predict the number of scans i.e., C(n,W ), of each node

n. Hence, C(T ′,W ) can be calculated. Specifically, C(n,W )
equals the number of queries whose search boundary intersects

with the MBR of n. Intuitively, it can be computed by density

integral over the intersection area, which is defined as follows.

Before that, we first introduce the intersection condition of two

MBRs. Consider the MBR of node B(n), denoted by its center

(xr, yr), width (wr) and height (hr). If the following condition

is satisfied, then B(n) and B(q) will be intersected.

B(n) intersects B(q), if

{
|xr − xq| ≤ wr + wq

|yr − yq| ≤ hr + hq

Given the intersection condition, we can easily obtain the

intersection area (denoted by A(n)) of a node n, where queries

in this area will scan the node. A(n):

A(n) =

⎧⎪⎨
⎪⎩
xr − wr − wq ≤xq ≤ xr + wr + wq

yr − hr − hq ≤yq ≤ yr + hr + hq

wq ≥ 0, hq ≥ 0

Therefore, given the distribution and integral area , the

number of scans of a node in a given workload W can be

obtained with integration as follows:

C(n,W ) =

∫∫∫∫
A(n)

P (xq, yq, wq, hq)dρ

Apparently, directly computing the 4-dimension integration

is time-consuming, and thus we will illustrate how to conduct

efficient integration computation in Section IV-A.

C. Learned kNN Approximation

In this part, we will showcase the key idea of how to

handle the workload including kNN queries using the above

framework. For any given query point o = (xo, yo), we use

kNN(o) to denote the set of k nearest neighbor to o. Suppose

that the k-th nearest data instance of o is o′, and the distance

between o and o′ is denoted by d(o). Since kNN query is

implemented with the best first search algorithm, the scan

nodes of kNN(o) are the same to range query with a circular

area with o as the center and d(o) as the radius [29]. Then, we

can transform the kNN query to range search query, and use

the aforementioned framework to solve the problem. Hence,

the core problem is how to compute d(o).

d(o) Prediction. To predict the d(o), firstly, we need to learn

the distribution of these data instances, denoted by Q(x, y).
Then, we use E(o, d(o)) =

∫∫
c(o,d(o))

Q(x, y)dδ to denote the

excepted number of data instances inside the search boundary,

i.e., c(o, d(o)), the circle with o as the center and d(o) as the

radius. Hence, solving the function E(o, d(o)) = k, we can

derive the corresponding d(o) (see Section V for details).

IV. LEARNED COST MODEL

In this section, we will introduce the learned cost model
proposed by us for predicting the cost C for any given R-tree

T and workload W . In this section, we first introduce given the

model (i.e., the query distribution P ), how to use it to infer

the estimated cost (i.e., the integration computation). Then

we introduce the training process to learn query distribution.

Finally, given the model training and inference methods, we

illustrate how to conduct the data insertion algorithm using

the cost model.

A. Cost Model Inference

As discussed in Section III-B, to estimate the cost of an

R-tree T with a given workload W , the model will first

break down to estimate the cost (number of scans) of each

node, i.e., C(n,W ) in an R-tree, and then sum them up. To

be specific, C(n,W ) can be obtained with a 4-dimensional

integration when the query distribution P (xq, yq, wq, hq) is

learned. However, directly computing the 4-dimensional in-

tegration is apparently time-consuming. Therefore, in this

section, we will illustrate how to conduct efficient integration

computation as follows.

In real workload, the query distribution over the entire

spatial space is likely to be complicated, but a reasonable

assumption is that the distribution over a small local area can

be approximated as a uniform distribution. Based on that, the

integration computation can be much accelerated using these

uniform distributions.

More specifically, this basic idea consists of three steps: (1)

Divide the entire space into several partitions, each of which

can be approximately described by the uniform distribution.

52077

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 



q

n
q

n

p1 p2

p3

p1 p2

p3
(a) (b)

h

w

h

w

Fig. 6. Inference with space partitions

CF
ρ
(t
)

t
1 3 8 12 16

ρ
w

h

t
1 3 8 12 16

CF
ρ
(t
)

ρ
w

h

(c) Learned 1-dimension CF(b) Discrete 1-dimension CF (d) Grid clusters(a) Workload Preprocessing 

ρ

w
h

g1 g2

g3g4

g5

g6 g7

g8

g10 g11

g12

g13g14

g9

g15 g16

ρ
w

h

Fig. 7. An example of learning to cluster the grids

(2) Compute the integration over each uniform distribution

of each partition. (3) Compute the C(n,W ) by summing

the result of each partition up. The first step is done in the

phase of cost model training, which will be discussed in

Section IV-B. Here, we introduce the uniform distribution and

how to compute the cost based on it.

Uniform Distribution. We first assume an extreme case that

the entire space can be regarded as a uniform distribution,

where P (xq, yq, wq, hq) follows a 4-dimension uniform dis-

tribution, and (wq, hq) is always independent to (xq, yq) in

practice. In this case, the density of query in the entire data

space is a constant, denoted as ρ. C(n,W ) is integration of

density over the area of intersection area A(n). Therefore,

C(n,W ) can be simplified as follows:

C(n,W ) = ρ

∫∫
A(n)

P (wq, hq)dδ

Note that P (wq, hq) is the probability density of a 2 di-

mension uniform distribution, which can be expressed as

U(wl, wu, hl, hu) ([wl, wu] is the interval of w and [hl, hu]
is the interval of h). The expected width is denoted by w and

the excepted height is denoted by h. By expanding the integral

area A(n), C(n,W ) can be expressed as follows:

C(n,W )

=ρ

∫ wu

wl

∫ hu

hl

1

wu − wl

1

hu − hl
(wr + w)(hr + h)dhdw

=ρ(wr +
1

2
(wl + wu))(hr +

1

2
(hl + hu))

=ρ(wr + w)(hr + h)

In this way, C(n,W ) can be computed by the simple yet

efficient mathematical operations over the density of query ρ,

the average width w and the average height h, which is much

more efficient than directly computing the multi-dimensional

integration.

Inference with space partitions. However, in real case, it

is not reasonable to approximate the whole space into as a

uniform distribution. Instead, we divide the space into some

partitions (see Section IV-B in detail), each of which can be

approximated as a uniform distribution.

To be specific, suppose that the space is is divided into

N rectangle partitions, denoted by {p1, p2, · · · , pN}, queries

in each of which are similar to each other. Note that not

all partitions should be considered for computing C(n,W )
because they are far away from the node n, and thus the

queries in these partitions have no chance to influence the

cost of n. Next, we will introduce the partitions that should

be considered, in which queries may intersect with the node

n when they are executed. More concretely, we observe that

given the node n, whether a partition will influence C(n,W )
can be determined with the boundary of partition, the height

and weight of the queries inside the partition. For ease of

computation, we use the average height and width to represent

all the queries in the same partition. Specifically, we denote

the partition p as (xp, yp, wp, hp, w, h), where (xp, yp, wp, hp)
is the boundary of p. Therefore, the influence condition can

be formally described as below:

p influences C(n,W ), if

{
|xr − xp| ≤ wr + wp + w

|yr − yp| ≤ hr + hp + h

Then, we aim to compute which queries of each such

partition will intersect with n, and C(n,W ) can be computed

through integration over these intersection areas. To this end,

we observe that by extending the MBR of n, we can easily

discover these intersection areas. We denote S(n, pi) as the

intersection area of pi and the extended MBR of node n, and

ρi as the query density in pi. Then C(n,W ) can be computed

by the following equation:

C(n,W ) =
N∑
i=1

ρiS(n, pi)

Example 4: As Fig. 6 shows, given a workload W , we

assume the space is divided into 3 partitions {p1, p2, p3} after

the model training process. Now given a node n, we need to

compute the number of scans of node over the workload, i.e.,
C(n,W ) based on the space partitions. Since all partitions

may influence C(n,W ), we take p1 as an example. The

three features of p1 are denoted as {ρ1, w1, h1}. For ease of

representation, we assume that all the width and height of

queries in p1 are (w1, h1). To compute C(n,W ), we need

to determine which queries in p1 will scan n, and compute

the intersection area of the space of influence condition (the

red dotted line) and the space of p1, shown as the grey area.

Therefore, the influence of p1 to the cost is ρ1S(n, p1), where

S(n, p1) is the area of the grey part. The influence of other two

62078

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 



partitions p2, p3 is same as p1. By summing up the influence

of all these three partitions, C(n,W ) is computed.

In this way, the time complexity to compute C(n,W ) is

O(N). The reason is that we iterate all partitions to check if

their boundaries intersect with the extended MBR of n.

Acceleration with R-tree. When the number of space par-

titions is large, the above method is not efficient even with

the linear time complexity. To address this, we can organize

the space partitions into an in-memory R-tree. Specifically, to

check whether a space partition p influences C(n,W ), we can

extend the boundary of p to (xp, yp, wp+w, hp+h) and detect

whether the MBR of n intersects with this extended boundary.

Then we can build an R-tree with all the extended boundary

of all space partitions. Afterwards, to search the partitions that

will influence C(n,W ), we can issue a range query, i.e., the

MBR of n, and obtain these partitions. Then we reduce the

expected average cost estimation time complexity from O(N)
to O(logN).

B. Cost Model Training

Recap that in Section III, the training step takes as input

the workload W and learns the query distribution from W . In

order to predict the cost in an efficient way, we need to divide

the space into some space partitions, in which the distribution

of queries approximately follows a uniform distribution. To

this end, during the model training process, RW-tree aims to

learn the distribution of queries from given workload W , based

on which we conduct the aforementioned space partition.

At a high level, this phase consists of 3 steps. First, we

preprocess the workload by dividing the entire space into grids,

mapping the queries into their corresponding grids and then

compute the statistics of these queries. Second, we cluster

these grids along with the space-filling curve, where queries

in the same cluster have similar statistics. Third, we compute

the space partitions based on these clusters. Next, we illustrate

the above three steps respectively.

Workload Preprocessing. Since our task is to divide the

space into several partitions, each of which follows an uniform

distribution (Section IV-A), we propose to first divide the

entire space into a number of small equal-size grids and then

cluster some of them based on the query statistics.

Recap that in Section III-B, the range query is represented

by a quadruple (xq, yq, wq, hq), so we consider three types

of statistics for each grid gi. Specifically, (1) the density of

queries whose centers are inside gi, denoted by ρi, which

equals to the number of queries inside gi divided by the area

of gi; (2) the average width wi of the above queries; and (3)

the average height hi of the above queries. Next, we aim to

cluster these grids based on the above features.

Learning to cluster the grids. Since we aim to use a

uniform distribution to describe each partition, the grids in the

partition should both be spatially continuous and have similar

features. First, to achieve the spatial continuity, we sort all

the grids by the position of each grid along with a space-

filling curve, producing a sequence G = [g1, g2, ..., g|G|]. As

discussed above, each gi contains three features, denoted by

fi = {ρi, wi, hi}. In this way, given an arbitrary continuous

interval on the curve, the grids corresponding to the interval

constitute a continuous space area [18]. Therefore, if we divide

the sequence of sorted grids into several fragments, each of

which corresponds to a spatially continuous partition. Next,

we will study how to divide the sequence to ensure that each

fragment has grids with similar features inside.

Since we have three dimension features to be clustered, in

this part, we first study how to cluster one of them, and in the

next space partition part, we will show how to combine

these three types of clusters.

Taking the feature of ρ as an example, following the

sequence of grids, we have a sequence Gρ = [ρ1, ρ2, ...ρ|G|],
based on which we first define a cumulative function

CFρ(t) =
∑t

i=1 ρi, as shown in Fig. 7. Second, we compute a

piecewise linear function CF∗
ρ to approximate the cumulative

function, which can well represent the distribution of ρ. Recap

that we aim to require each space partition that can be

described with a uniform distribution, i.e., ρ of grids in each

partition should be similar. Obviously, the grids of each piece

of CF∗
ρ have the same gradient, so we cluster these grids into

the same partition and these clusters constitute a collection of

grids, denoted by Cρ.

Example 5: As Fig. 7 shows, when we cluster the grids by

the density feature, we get a sequence Gρ = [ρ1, ρ2, ...ρ16]
along with the space-filling curve shown in Fig. 7(a). We can

compute CFρ(t), t ∈ {1, 2, · · · , 16} based on the definition

of cumulative function CFρ(t) =
∑t

i=1 ρi (e.g., CFρ(3) =
ρ1 + ρ2 + ρ3). Based on that, we can learn a peicewise linear

function CF∗
ρ, as shown in Fig. 7(c). Since when the grids have

similar ρ like ρ1, ρ2, ρ3, the gradients in the corresponding

interval of CF∗
ρ are the same. So according to our algorithm,

we will cluster these grids into the same partition. In this

example, CF∗
ρ is divided into four pieces, and thus the

collection of clusters based on density ρ is Cρ = {{g1, g2, g3},
{g4, g5, g6, g7, g8}, {g9, g10, g11, g12}, {g13, g14, g15, g16}}, as

shown in Fig. 7(d).

Similarly, we will conduct the same steps for features w
and h. Next, we introduce how to combine them to produce

the final partition.

Adjust collections to space partition. In the above paragraph,

given three sequences Gρ, Gw and Gh, we compute three

collections denoted by Cρ, Cw and Ch. Next, we show how to

adjust these collections to produce the final space partitions

such that in each partition, the above three features of grids

are similar. At a high level, the adjustment consists of 2 steps.

(1) [Collections combination.] We first need to combine the

three collections into a single one, denoted by CG, and each

cluster in CG have similar features.

To be specific, for each collection, we give each cluster a

unique ID (e.g., {c1ρ, c2ρ, ....}) and then assign the each ID

to the corresponding grids in each cluster. For example, as

shown in Fig. 8(a), the collection of clusters based on density

ρ is Cρ = {{g1, g2, g3}, {g4, g5, g6, g7, g8}, {g9, g10, g11, g12},

72079

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. Adjust collections to space partitions.

{g13, g14, g15, g16}}. Then grids in the first cluster {g1, g2, g3}
will be assigned to c1ρ. Then each grid will be assigned with

three IDs, denoted by a triplet [ciρ, c
j
w, c

k
h
]. If two grids have

the same triplet, they have same query features, and thereby

they will be in the same partition.

Example 6: As Fig. 8 shows, we need to merge the three

given collections Cρ, Cw, Ch into a combined one. Note that

two grids in the same cluster of a collection have the same

feature and will be assigned to the same ID. Taking two grids

g1, g2 as an example, they are both in c1ρ cluster, so we can

infer that ρ1 = ρ2. As Fig. 8 (a) (b) (c) shows, each grid will

be assigned with 3 IDs, we merge the 3 IDs into a triplet. As

a example, the three feature IDs of g2 are c1ρ, c
2
w, c

1
h

, so the

triplet of g2 is (1, 2, 1). Along with the space-filling curve, we

can divide the space based on the triplet of grids(shown in

(d)) to the combined space partition CG(shown in (e)).

(2) [Adjust CG to rectangular partitions.] Recap that in

the inference step, each partition should be a rectangle for

improving the efficiency. Hence, we should adjust CG to

rectangular partitions. To this end, for each partition in CG,

if it is not a rectangle, we use a greedy strategy to split it

to several rectangles. Specifically, the greedy method splits

the space partition composed of arbitrary adjacent grids into

several partitions with rectangle boundary. First, we set all

the grids as ”non-clustered”; Then, we repeat the process of

finding the maximum rectangle area from the ”non-cluster”

grids and dividing them into a new partition. Since each time

we will at least transform a “non-clustered” to a “clustered”

node. So after a limited number of iteration, all the grids in

original partition will be clustered into several partitions with

a rectangle boundary.

V. KNN QUERY WORKLOAD IN RW-TREE

As discussed in Section III-C, in order to support kNN

queries in the query workload, we transform them to range

search queries, and use the aforementioned framework to

optimize the R-tree insertion algorithm with given workload

W . The transformation process requires the k-th nearest

distance d(o). Note that d(o) is predicted by solving the

function E(o, d(o)) =
∫∫

c(o,d(o))
Q(x, y)dδ = k, but solving

the function with multi-dimensional integration is a time-

consuming task. To this end, we use the basic idea of partition

in Section IV-A: accelerating the integration computation by

dividing the space into several partitions based on the data

distribution in R-tree. At a high level, the prediction process

consists of two steps: (1) Partition the space based on the data

distribution learned from R-tree; (2) Solve the function of d(o)
based on the data partition.

A. Partition the space with learned data distribution.

This step takes as input a set R of data instances in the R-

tree and learns the data distribution from R, and then divides

the space into some space partitions, in which the distribution

of data instances approximately follows a uniform distribution.

At a high level, this process is similar to the training process

in Section IV-B, which considers three features to partition.

Here, we just use one feature (i.e., the density) to conduct this

because only this feature will mostly influence the computation

of d(o). The reason is as follows. Typically, all the data

instances in R-tree can be represented by their MBRs, denoted

as (xr, yr, wr, hr). Note that in the real applications, d(o) is

usually much larger than the width and height of data in an

R-tree. So we use the distance between o and the center of an

instance to approximate the real distance between o and the

boundary of the instance, so as to simplify the computation

of d(o). Based on that, all the data instances in R-tree can

be represented by the coordinates of their centers, denoted as

(xr, yr). Then, by reusing the training process of the above

learned cost model, we obtain a space partition CD. In CD,

each partition have similar data density.

B. Computing d(o) using the partitions

Given CD, the query point o = (xr, yr) and k, we

aim to compute d(o) by solving the equation E(o, d(o)) =∫∫
c(o,d(o))

Q(x, y)dδ = k. To this end, we first consider a

general case that c(o, d(o)) is included by a single partition pi
because the area of our partition is always much larger than

c(o, d(o)). In this case, we define the density of pi as ρi. Then

we can transform the above equation as follows:

E(o, d(o)) = ρiπd(o)
2

where πd(o)2 is the area of c(o, d(o)). From the above

equation, we can compute that d(o) =
√

k
ρπ .

For more complicated cases that the circle covers different

partitions, we can also compute d(o) by considering the area

covered by these partitions associated with different density.

82080

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 



VI. EXPERIMENT

The key questions that we aim to answer in the experi-

ment are: (Exp-1) How well does RW-tree perform in the

range query by varying some parameters? (Exp-2) Whether

RW-tree can outperform the state-of-the-art R-tree and its

variants? (Exp-3) What is the effect of our kNN approximation

in the end-to-end evaluation? , and (Exp-4) What is the

performance of our learned cost model?

A. Experimental Setup

Datasets. We used two synthetic datasets and two real-world

datasets to evaluate RW-tree.

• Synthetic Uniform (Syn-Uni). This dataset consists of

10k rectangles (i.e., data instances) with a fixed size.

The centers of rectangles in workload are synthetically

generated following the uniform distribution. The center

of each rectangle is denoted as (xr, yr), both of them

follow the uniform distribution and are independent of

each other. Some parameters can be configured to tune

the statistic features of this workload. In the experiments,

the width and height of each data instance are both fixed

to 1. Both xr and yr follow the uniform distribution

U(0, 1000), and thus xr and yr are in the range [0, 1000].
• Synthetic Skew (Syn-Skew). This dataset consists of

100, 000 rectangles with various sizes. The centers of

the rectangles in workload are synthetically generated,

following a 2-dimensional normal distribution. The cen-

ters of data instances are first generated by a standard 2-

dimensional distribution and then resized by affine trans-

formation. Some parameters can be configured to tune the

statistic features of this workload. In the experiments, the

width and height of each data instance are both generated

following the uniform distribution U(0, 2). Therefore, the

average width and height of rectangles are both 1. We let

(xr, yr) follow the normal distribution and then resize it

by affine transformation. Both the range of xr and yr are

[0, 1000].
• OSM-China. This dataset is a real-world dataset that

contains the MBRs of buildings in China extracted from

OpenStreetMap (OSM). The buildings in this dataset

are expressed by the four boundary values, which are

expressed by latitude and longitude. We can produce the

center (xr, yr), width and height (i.e., (wr, hr)) of each

data instance based on the four boundary values. The

average width (wr) and height (hr) of data instances are

4.39 × 10−5 and 8.51 × 10−5, respectively. The xr and

yr are in range [73.53, 134.78] and [15.78, 53.50], respec-

tively. The number of data instances in this workload is

more than 1.744M .

• OSM Central-America (OSM-CA). Similar to OSM-
China, we obtained this real-world dataset from Open-

StreetMap (OSM). This dataset has 2.00M MBRs of

buildings in Central America. Similarly, we produce

https://www.openstreetmap.org

https://www.openstreetmap.org

TABLE I
STATISTICS OF DATASETS

Datasets Syn-Uni Syn-Skew OSM-China OSM-CA
#-Rectangles 10k 10k 1.744M 2.00M

wr 1 1 4.39× 10−5 1.61× 10−5

hr 1 1 8.51× 10−5 4.00× 10−5

[minxr,maxxr] [0, 1000] [0, 1000] [73.53, 134.78] [-92.24, -59.42]
[min yr,max yr] [0, 1000] [0, 1000] [15.78, 53.50] [5.54, 27.26]

the center point (i.e., (xr, yr)) and width and height

(i.e., (wr, hr)) of each data instance based on the four

boundary values. The average width (wr) and height (hr)

of data instances are 1.61 × 10−5 and 4.00 × 10−5,

respectively. The xr and yr are in range [−92.24,−59.42]
and [5.54, 27.26], respectively.

In summary, the statistics of experimental datasets are

shown in Table I.

Workloads. Since RW-tree is designed to optimize the

data insertion operation based on historical workloads, some

characteristics of the workload may impact the performance

of RW-tree. In addition to some regular statistics (e.g., xr,

yr, wr, and hr) of the workload, we also took the skew and

selectivity of the workload into consideration:

• skew: the larger value of the ratio between the width and

height of queries, i.e., max(
wq

hq
,
hq

wq
).

• selectivity: the ratio of the area of the query to the whole

data space.

We obtained one query workload for each dataset, and thus

we utilized four workloads to evaluate the performance.
For two synthetic datasets, we generated workload by

vaying the skew and selectivity.
For two real-world datasets, we extracted a series of map

queries corresponding to each OSM dataset. For evaluating the

performance of RW-tree in different skew, we clustered all

queries into three groups by their skew: [1, 4), [4, 8), [8,∞)
and randomly sampled the queries in each group to generate

the workload in the experiments.
We randomly sampled 100k for each workload to perform

the experiments, for four datasets. Since the queries are

sampled randomly, the average execution time will not change

when we increase the number of queries in the workload

proportionally.

Methods. Since RW-tree optimizes the workloads with

frequently dynamic data insertion, we compared RW-tree
with traditional R-tree and its variants that are suitable for such

cases. There are a set of R-tree [16] and well-known variants,

i.e., R-tree with Greene’s [14] and R*-tree [4]. As we all know,

R*-tree [4] significantly outperforms original R-tree [16] and

R-tree with Greene’s [14]. Therefore, we utilized the R*-

tree [4] as the strong baseline. We do not compare RW-tree
with bulk-loading R-tree variants [1], [2], [17], [19], [23], [28]

because we focus on the dynamic data insertion.

• RW-tree: a learned workload-aware R-tree variant.

RW-tree learns the distribution of queries from histor-

ical workloads and optimizes the data organization in R-

tree based on the learned cost model.

92081

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 



� � � � ��

��������	


����

���	

����

�
	�

�
�

�
�
�


�
�
�
�

�����������	
	����
�

� � � � ��

��������	


��	

���

��


�
	�

�
�

�
�
�


�
�
�
�

�����������	
	���
�

� � � � ��

��������	


���

��	

���

�
	�

�
�

�
�
�


�
�
�
�

�����������	
	��
�

� � � � ��

��������	


�

��

��

�
	�

�
�

�
�
�


�
�
�
�

�����������	
	
���

��
����

��
����

����
�

Fig. 9. Exp-1: Execution Time (seconds) v.s. Skew (Syn-Uni Dataset)

� � � � ��

��������	


���

���

���

�
	�

�
�

�
�
�


�
�
�
�

�����������	
	����
�

� � � � ��

��������	


���

��	

���

�
	�

�
�

�
�
�


�
�
�
�

�����������	
	���
�

� � � � ��

��������	


���

��	

���

�
	�

�
�

�
�
�


�
�
�
�

�����������	
	��
�

� � � � ��

��������	


��

�	

�
	�

�
�

�
�
�


�
�
�
�

�����������	
	
���


��
���


��
���

����
�

Fig. 10. Exp-1: Execution Time (ms) v.s. Skew (Syn-Skew Dataset)

����� ���� ��� �

�����������	
��

�

�

��



��

�
	

�
�
�
�
�
�
�
�

��������

����� ���� ��� �

�����������	
��

�

�



��

�
	

�
�
�
�
�
�
�
�

��������

����� ���� ��� �

�����������	
��

�

�

��



��

�
	

�
�
�
�
�
�
�
�

�������	

����� ���� ��� �

�����������	
��

�

�

��



��

�
	

�
�
�
�
�
�
�
�

�������


����� ���� ��� �

�����������	
��

�

�

��



��

�
	

�
�
�
�
�
�
�
�

���������

����	

 ����	



������

Fig. 11. Exp-1: Execution Time (seconds) v.s. Selectivity (Syn-Uni Dataset)

����� ���� ��� �

�����������	
��

�

�

��



��

�
	

�
�
�
�
�
�
�
�

��������

����� ���� ��� �

�����������	
��

�

�

��



��

�
	

�
�
�
�
�
�
�
�

��������

����� ���� ��� �

�����������	
��

�

�

��



��

�
	

�
�
�
�
�
�
�
�

�������	

����� ���� ��� �

�����������	
��

�

�

��



��

�
	

�
�
�
�
�
�
�
�

�������


����� ���� ��� �

�����������	
��

�

��



��

�
	

�
�
�
�
�
�
�
�

���������

����	

 ����	



������

Fig. 12. Exp-1: Execution Time (seconds) v.s. Selectivity (Syn-Skew Dataset)

• R*-tree [4]: a classic R-tree variant which incorporates

a combined optimization of area, margin, and overlap

of enclosing rectangles of nodes. In real-world dynamic

workload, it can usually achieve the state-of-art perfor-

mance.

Parameters. The minimal and the maximum capacity of the

R-tree’s node are the key parameters of the R-tree [16]. We

assumed the page size of the operating system is 4k bytes, and

we used an 8-byte integer to identify each page. Therefore,

each element in each node of the R-tree will conclude an

integer pointed to the child page and four double values to

express the boundary of this child node, which takes up 40

bytes of space in a page. Thus, we can compute that the

maximum capacity of a node as 100. From experience, the

minimal capacity should be about 30% to 40% of maximum

capacity, so we set the minimum capacity of a node to be 40.

We trained the learned cost model using a set of real-world

and synthetic workloads with 10k queries in total. Note that

the training workloads and the testing workloads are different.

Experimental Environment. All algorithms are implemented

by C++. All experiments are conducted on a Ubuntu server

with 80 cores of Intel(R) Xeon(R) Gold 6242R CPU @

3.10GHz and 256GB RAM.

B. Experimental Results

Exp-1: Overall Performance of RW-tree.
In the first group of experiments, we evaluate end-to-end

performance of RW-tree by varying the skew and selectivity
of the query workloads.

Vary the Skew. For the two synthetic datasets (i.e., Syn-Uni

and Syn-Skew), we vary the skew in {1, 2, 4, 8, 16}. Fig. 9

and Fig. 10 show the total execution time of the workload

for each dataset, by varying the skew. With the increase of

skew, the gap between RW-tree and R*-tree tends to be

bigger, since R*-tree tends to organize data instances using

square and thus leads to the higher query cost. Thanks to the

learned cost model from the historical workloads, RW-tree
can effectively organize the data instances and thus achieve

efficient queries.

Vary the Selectivity. For the two synthetic datasets (i.e., Syn-

Uni and Syn-Skew), we also vary the selectivity in {1 ×
10−5, 1×10−4, 1×10−3, 1×10−2}. Fig. 11- 12 depict the total

execution time of the workload for each dataset, by varying

the selectivity. With the increase of selectivity, it takes more

102082

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 



(a) OSM-China Dataset (b) OSM-CA Dataset

Fig. 13. Exp-1: Execution Time (seconds) v.s. Skew

0.00001

0.0001

0.001

0.01

0.00001

0.0001

0.001

0.01

(a) Speed-up on Syn-Uni Dataset (b) Speed-up on Syn-Skew Dataset

Fig. 14. Exp-2: Speed-up Ratio v.s. Skew and Selectivity (%)

execution time for all methods as a larger selectivity leads to

more data instances to be visited. However, RW-tree still

achieves better results by comparing with R*-tree.

Similar observations can be derived by experiments on the

two real-world datasets (Fig. 13). We omit to discuss due to

space limitations.

In summary, we make two observations from this group of

experiments:

• Compared with R*-tree, RW-tree achieves competitive

performance under various skew and selectivity. The

larger the skew of the workloads, the better the RW-tree.

• In general, RW-tree is not sensitive to the selectivity of

the workloads, but RW-tree slightly outperforms R*-

tree when the selectivity is larger than 0.1%.

Exp-2: Comparison with the State of the art.
Our main purpose in this group of experiments is to test the

performance improvement of RW-tree against R*-tree under

various skew and selectivity of the workloads. We compute

the speed-up ratio of RW-tree by dividing the workload

execution time of R*-tree to RW-tree’s.

Fig. 14 summarizes the evaluation results. More concretely,

the heatmap shows the speed-up ratio under different skew
and selectivity settings. The bar charts colored in red report

the average speed-up ratio by skew, while the green bar charts

show the average speed-up ratio across different selectivity

settings. Next, we will elaborate on the evaluation results. For

the synthetic dataset with uniform distribution (Syn-Uni), as

shown in the heatmap of Fig. 14(a), we can see that the speed-

up ratio is larger than 1.0 in almost all cases. For the synthetic

dataset with skew distribution (Syn-Skew), we can see that

the speed-up ratio of RW-tree is larger than 1.0 in all cases

(Fig. 14(b)). Next, we give a closer look at the two heatmaps.

We can see that the larger the skew and selectivity, the larger

the speed-up ratio of our method. Both in the Syn-Uni dataset

and the Syn-Skew dataset, the maximum speed-up ratio of

RW-tree is 1.24×. Furthermore, by comparing the red bar

charts and green bar charts, we can make the observations

that the skew will contribute more to the speed-up ratio of

RW-tree. In other words, the higher skew of the dataset,

the more efficient of RW-tree. Overall, RW-tree shows its

k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

(a) kNN Workload on OSM-CA Dataset (b) kNN Workload on Syn-Uni Dataset

Fig. 15. Exp-3: The performance of kNN Approximation

effectiveness by achieving the speed-up ratio of 1.06 and 1.11
on average on the Syn-Uni dataset and the Syn-Skew dataset,

respectively.

Exp-3: Performance of kNN Approximation.
In this set of experiments, we test the performance of the

kNN approximation of RW-tree.

First, we generate kNN workloads from four range query

workloads as introduced in Section VI-A. We take the center

of the range query as the search point of the kNN query. Next,

we run four kNN workloads on the corresponding datasets.

Fig. 15 shows the total execution time of the kNN workload

for different datasets. Overall, RW-tree outperforms R*-tree

in all testing cases. Moreover, we observe that the performance

improvement in the OSM-CA dataset is better than the Syn-

Uni dataset. The reason is that the kNN queries will first be

transformed into square-based range queries for training the

cost model of RW-tree, and thus the dataset following the

uniform distribution, the improvement of RW-tree is limited

due to the low skew.

Exp-4: Performance of Learned Cost Model.
Since the learned cost model contributes a lot to the overall

performance of RW-tree, we evaluate the performance of

our learned cost model by comparing it with the true cost of

executing the workload.

We use a series of boundaries with different selectivity as

testing queries. We run the testing queries with RW-tree and

get the cost estimated by the learned cost model. We execute

the testing queries and take the number of actual scanned times

of these boundaries as the true cost. We repeat five times to

112083

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 



��� ��� ��� ��� ��� ��� ��� ��	

�����������	
��

���

���

���

���

��




�
�
�

��
��������������� ���������

������

(a) OSM-China Dataset

��� ��� ��� ��� ��� ��� ��� ��	

�����������	
��

���

���

���

���

��




�
�
�

��
��������������� ���������

������

(b) OSM-CA Dataset

Fig. 16. Exp-4: Performance of Learned Cost Model

cover more cases.

Fig. 16 shows the relationship between the cost estimated by

the learned cost model and the true cost after normalization.

We can see that they follow a similar distribution, which

indicates our learned cost model works well.

VII. RELATED WORK

We classify the related work of multi-dimensional spatial

index into three categories: (1) R-tree and its variants; (2)

Packing R-tree indices; (3) Learned Spatial index.

A. R-tree and its Variants

R-tree with Dynamic Data Insertion. Different from the

other traditional spatial indexes such as [6], [30] which or-

ganize the data instances by space partition, R-tree is a multi-

dimensional spatial index that clusters the data instances into

a hierarchical structure based on their boundaries. The R-

tree [16] and its variants such as R*-tree [4], [5], [14], [31]

will cluster the data instances based on some heuristic metrics

such as the area enlargement or the overlap of MBRs. These

methods focus on the case of dynamic data insertion. As

discussed in Section II, these heuristic metrics may lead to a

higher time consumption over the workload. This motivates us

to find a method to estimate the time cost of a given workload

on an R-tree, which leads to the idea of workload-aware R-tree

construction.

R-tree with Bulk-loading Insertion. A different line of

research works consider to construct R-tree by directly packing

the data instances into the leaf nodes instead of inserting each

instance individually. In other words, the entire R-tree is bulk-

loaded in a bottom-up way. R-tree built with the bulk-loading

algorithms such as [17], [19], [23] mostly relies on the order

of the data instances, and thus such techniques will suffer a

high I/O cost when ordering. Besides, some other packing R-

trees consider to order data instances with other factors like

features of queries [1], [2]. The query-adaptive idea is similar

to the idea of workload-aware way. However, the above two

works only consider simple query types and do not support

dynamic data insertion.

B. Learned Spatial Index

Learned 1D Index. The key idea of the learned index is

to learn the Cumulative Distribution Function (CDF) of the

search key. We can directly estimate the position of stored

data based on the position of the search key based on the

CDF. The learned index is first proposed in RMI [21], which

utilizes a recursive model index to learn the CDF, then it

computes the position of the search key based on the CDF,

and thus the stored position of corresponding data can be

acquired efficiently. The framework of RMI [21] only supports

1-dimensional data and does not support dynamic data updates.

Several learned indexes on 1-dimensional data [10], [12],

[13], [20], [36] have been proposed to support dynamic data

updates. Although such techniques overcome the weakness

of dynamic data updates of RMI, they do not support multi-

dimensional data.

Learned Spatial Index. From learned 1D index to learned

spatial index, the key challenge is how to effectively organize

multi-dimensional data instances. One alternative method is to

utilize the space-filling curve to order all the data instances,

which is studied by [27], [34]. Different from that, LISA [25]

partitions the whole data space using grids, and then learns

the data distribution based on these grids. Flood [26] takes the

workload into consideration to optimize the learning process.

Tsunami [11] extends Flood [26] by overcoming the limita-

tions of skewed workload and correlated datasets. ML-Index

[9] maps point instances to a 1-dimensional space and then

learns the CDF, which also follows the idea of mapping multi-

dimensional data to one-dimensional space. Although the

above methods achieve good performance on static workload,

the main limitation is that they do not support workload

with dynamic data insertion. Besides, ML models can also

be utilized to improve the performance of the database [8],

[22], [38], [39], such as query optimization [24], [32], [33],

[33], [35], [37], [40].

VIII. CONCLUSION

In this paper, we study the problem of workload-aware

R-tree construction. Given a workload, we design an R-

tree construction framework such that queries with the same

distribution as the workload can be efficiently executed on

the R-tree. We propose a learning-based method to learn the

distribution of the workload. Then we propose a cost model to

measure how a data insertion strategy performs and select the

best one. Also, we support both range search and kNN queries

in the workload. Experimental results show that our method

outperforms the baseline in terms of the query efficiency.

ACKNOWLEDGMENT

This work is supported by NSF of China (61925205,

62102215, 62072261), Huawei, TAL education, China

National Postdoctoral Program for Innovative Talents

(BX2021155), China Postdoctoral Science Foundation

(2021M691784), Shuimu Tsinghua Scholar and Zhejiang

Lab’s International Talent Fund for Young Professionals.

122084

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] D. Achakeev, B. Seeger, and P. Widmayer. Sort-based query-adaptive
loading of r-trees. In Proceedings of the 21st ACM international
conference on Information and knowledge management, pages 2080–
2084, 2012.

[2] D. Achakeev, M. Seidemann, M. Schmidt, and B. Seeger. Sort-based
parallel loading of r-trees. In Proceedings of the 1st ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data, pages
62–70, 2012.

[3] L. Arge, M. D. Berg, H. Haverkort, and K. Yi. The priority r-tree:
A practically efficient and worst-case optimal r-tree. TALG, 4(1):1–30,
2008.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree:
An efficient and robust access method for points and rectangles. In
SIGMOD Conference 1990, pages 322–331, 1990.

[5] N. Beckmann and B. Seeger. A revised r*-tree in comparison with
related index structures. In SIGMOD Conference 2009, pages 799–812,
2009.

[6] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, sep 1975.

[7] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The x-tree: An index
structure for high-dimensional data. In Very Large Data-Bases, pages
28–39, 1996.

[8] C. Chai, J. Wang, Y. Luo, Z. Niu, and G. Li. Data management for
machine learning: A survey. TKDE, pages 1–1, 2022.

[9] A. Davitkova, E. Milchevski, and S. Michel. The ml-index: A multidi-
mensional, learned index for point, range, and nearest-neighbor queries.
In EDBT, pages 407–410, 2020.

[10] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann, et al. Alex: an updatable
adaptive learned index. In SIGMOD Conference 2020, pages 969–984,
2020.

[11] J. Ding, V. Nathan, M. Alizadeh, and T. Kraska. Tsunami: A learned
multi-dimensional index for correlated data and skewed workloads.
arXiv preprint arXiv:2006.13282, 2020.

[12] P. Ferragina and G. Vinciguerra. The pgm-index: a fully-dynamic
compressed learned index with provable worst-case bounds. PVLDB,
13(8):1162–1175, 2020.

[13] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska.
Fiting-tree: A data-aware index structure. In Proceedings of the 2019
International Conference on Management of Data, pages 1189–1206,
2019.

[14] D. Greene. An implementation and performance analysis of spatial data
access methods. In Proceedings of the Fifth International Conference on
Data Engineering, February 6-10, 1989, Los Angeles, California, USA,
pages 606–615. IEEE Computer Society, 1989.

[15] T. Gu, K. Feng, G. Cong, C. Long, Z. Wang, and S. Wang. The rlr-tree:
A reinforcement learning based r-tree for spatial data. arXiv preprint
arXiv:2103.04541, 2021.

[16] A. Guttman. R-trees: A dynamic index structure for spatial searching.
In B. Yormark, editor, SIGMOD’84, Proceedings of Annual Meeting,
Boston, Massachusetts, USA, June 18-21, 1984, pages 47–57. ACM
Press, 1984.

[17] H. Haverkort and F. V. Walderveen. Four-dimensional hilbert curves for
r-trees. JEA, 16:3–1, 2008.

[18] D. Hilbert. Über die stetige abbildung einer linie auf ein flächenstück.
In Dritter Band: Analysis· Grundlagen der Mathematik· Physik Ver-
schiedenes, pages 1–2. Springer, 1935.

[19] I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using
fractals. Technical report, 1993.

[20] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and
T. Neumann. Radixspline: a single-pass learned index. In Proceedings
of the Third International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management, pages 1–5, 2020.

[21] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case
for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data, pages 489–504, 2018.

[22] H. Lan, Z. Bao, and Y. Peng. A survey on advancing the dbms query
optimizer: Cardinality estimation, cost model, and plan enumeration.
Data Science and Engineering, 6(1):86–101, 2021.

[23] S. T. Leutenegger, M. A. Lopez, and J. Edgington. Str: A simple and
efficient algorithm for r-tree packing. In ICDE, pages 497–506, 1997.

[24] G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A query-aware database
tuning system with deep reinforcement learning. Proc. VLDB Endow.,
12(12):2118–2130, 2019.

[25] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan. Lisa: A learned index
structure for spatial data. In SIGMOD Conference 2020, pages 2119–
2133, 2020.

[26] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska. Learning multi-
dimensional indexes. In SIGMOD Conference 2020, pages 985–1000,
2020.

[27] J. Qi, G. Liu, C. S. Jensen, and L. Kulik. Effectively learning spatial
indices. PVLDB, 13(12):2341–2354, 2020.

[28] J. Qi, Y. Tao, Y. Chang, and R. Zhang. Packing r-trees with space-filling
curves: Theoretical optimality, empirical efficiency, and bulk-loading
parallelizability. TODS, 45(3):1–47, 2020.

[29] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.
In SIGMOD Conference 1995, pages 71–79, 1995.

[30] H. Samet. The quadtree and related hierarchical data structures. ACM
Comput. Surv., 16(2):187–260, jun 1984.

[31] T. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dynamic
index for multi-dimensional objects. Technical report, 1987.

[32] J. Sun and G. Li. An end-to-end learning-based cost estimator. Proc.
VLDB Endow., 13(3):307–319, 2019.

[33] J. Sun, J. Zhang, Z. Sun, G. Li, and N. Tang. Learned cardinality
estimation: A design space exploration and A comparative evaluation.
Proc. VLDB Endow., 15(1):85–97, 2021.

[34] H. Wang, X. Fu, J. Xu, and H. Lu. Learned index for spatial queries.
In MDM 2019, pages 569–574. IEEE, 2019.

[35] J. Wang, C. Chai, J. Liu, and G. Li. FACE: A normalizing flow based
cardinality estimator. PVLDB, 15(1):72–84, 2021.

[36] J. Wu, Y. Zhang, S. Chen, J. Wang, Y. Chen, and C. Xing. Updatable
learned index with precise positions. arXiv preprint arXiv:2104.05520,
2021.

[37] X. Yu, G. Li, C. Chai, and N. Tang. Reinforcement learning with tree-
lstm for join order selection. In ICDE, pages 1297–1308, 2020.

[38] C. Zhan and M. S. et al. Analyticdb: Real-time OLAP database system
at alibaba cloud. PVLDB, 12(12):2059–2070, 2019.

[39] X. Zhou, C. Chai, G. Li, and J. Sun. Database meets artificial
intelligence: A survey. IEEE TKDE, 34(3):1096–1116, 2022.

[40] X. Zhou, G. Li, C. Chai, and J. Feng. A learned query rewrite system
using monte carlo tree search. PVLDB, 15(1):46–58, 2021.

132085

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2023 at 03:02:09 UTC from IEEE Xplore.  Restrictions apply. 


