
Natural Language to SQL:
State of the Art and Open Problems

Yuyu Luo, Nan Tang
HKUST(GZ)

Ju Fan
Renmin Univ. of China

https://github.com/HKUSTDial/NL2SQL_Handbook
https://github.com/HKUSTDial/awesome-data-agents

yuyuluo@hkust-gz.edu.cn

Guoliang Li
Tsinghua University

Chengliang Chai
Beijing Institute of Tech.

https://github.com/HKUSTDial/NL2SQL_Handbook
https://github.com/HKUSTDial/awesome-data-agents
https://github.com/HKUSTDial/awesome-data-agents
https://github.com/HKUSTDial/awesome-data-agents
https://github.com/HKUSTDial/awesome-data-agents
https://github.com/HKUSTDial/awesome-data-agents
https://github.com/HKUSTDial/NL2SQL_Handbook
https://github.com/HKUSTDial/NL2SQL_Handbook
https://github.com/HKUSTDial/NL2SQL_Handbook

1

Who are the three youngest
winners across all matches?

And their ranks?

Users NL Query

NL2SQL Model

SELECT winner_name, winner_rank FROM
matches ORDER BY winner_age LIMIT 3

SQL

DB
Information

NL2SQL (Text-to-SQL):
Bridges Humans and Databases

2

C1. Ambiguous NL Query

C2. Requiring Domain Knowledge

C3. Complex Database Schema

C1

C2

C3

Task Challenges

3

C1. Ambiguous NL Query

C2. Requiring Domain Knowledge

C3. Complex Database Schema

C4. Multiple Possible SQL Queries

LiteraryGenre

LiteraryGenre 3

C1

C2

C3

C1

Task Challenges

4

C1. Ambiguous NL Query

C2. Requiring Domain Knowledge

C3. Complex Database Schema

C4. Multiple Possible SQL Queries

C5. Database Schema Dependency

C6. Database Domain Adaption

4

Task Challenges

5

NL2SQL Challenges

Uncertain NL Query

Lexical Ambiguity

Syntactic Ambiguity

Under-specification

User Mistakes

Complex Database
and Dirty Content

Complex Relationships Among Tables

Ambiguity in Attributes and Values

Domain-Specific Schema Designs

Large and Dirty Database Values

NL2SQL Translation

Free-form NL vs. Constrained and Formal SQL

Multiple Possible SQL Queries

Database Schema Dependency

Technical
Challenges in

Developing NL2SQL
Solutions

Model Efficiency

SQL Efficiency

Insufficient and Noisy Training Data

Cost-effective Solution

Data Privacy

Trustworthiness and Reliability

Task Challenges
(inherent challenges)

Challenges

Where Are We?

7https://github.com/HKUSTDial/NL2SQL_Handbook

https://github.com/HKUSTDial/NL2SQL_Handbook

8Figure: The Evolution of NL2SQL Solutions from the Perspective of Language Models.

Where Are We?

9

An Overview of NL2SQL Benchmarks

NL2SQL Benchmark Discussion & Insights
• From the Redundancy Measure perspective
• We observe a trend from early datasets to recent ones where datasets

have grown in size, including increases in the number of questions and
unique queries.

• From the Database Complexity perspective
• The number of databases (and tables) in datasets correlates with the

tasks (e.g., Single-domain vs. Robustness) they serve.
• From the Query Complexity perspective
• Recent datasets show a growing emphasis on Scalar Functions and

Mathematical Computations in SQL queries, which introduces challenges
in SQL generation structure not seen in earlier datasets.

10

Tutorial Roadmap

11

Tutorial Roadmap

12

Q1: How to design prompts and
train PLMs/LLMs for NL2SQL?

NL2SQL Solutions
with PLMs and LLMs

• Prompt Settings: Few-shot/Zero-shot
• Training: SFT / RL

Q2: How effective are the core
pre-processing techniques?

Tutorial Roadmap

13

Q1: How to design prompts and
train PLMs/LLMs for NL2SQL?

NL2SQL Solutions
with PLMs and LLMs

• Prompt Settings: Few-shot/Zero-shot
• Training: SFT / RL

NL2SQL Solutions
with (LLM) Agents

Q2: How effective are the core
pre-processing techniques?

Q3: How can we build a robust
NL2SQL Agent with LLMs?

Q4: From NL2SQL Agents to
Data Agents: Where are we

going?

Tutorial Outline

• Problem Definition, Preliminaries, Benchmarks
• NL2SQL Solutions with PLMs and LLMs
• NL2SQL Solutions with LLM Agents
• Open Problems

14

NL2SQL Solutions with PLMs and LLMs

15

• Rather than categorizing existing solutions by the specific PLMs or LLMs they
employ, we classify them according to the practical considerations of
different applications.

• Consideration #1: The resources or costs required to develop NL2SQL
– Computational resources (e.g., GPUs) for training
– The monetary cost of calling LLMs (e.g., GPT) APIs

Model Resources
RESDSQL + NatSQL A100*1

CodeS A800*8
Granite-20B-Code A100*8+H100*8

Model Input Output
GPT-3.5-

turbo
$0.50 /

1M tokens
$0.50 /

1M tokens

gpt-4o $5 /
1M tokens

$15 /
1M tokens

NL2SQL Solutions with PLMs and LLMs

16

• Rather than categorizing existing solutions by the specific PLMs
or LLMs they employ, we classify them according to the practical
considerations of different applications.

• Consideration #2: The amount of data required for training NL2SQL
– E.g., the CodeS model collects:
• SQL-related data (11GB), NL-to-code data (6GB), and NL-related data

(4.5GB)
– E.g., the existing benchmarks paid much efforts to collect annotated data
• Spider has 10,181 NL-SQL pairs
• BIRD has 12,751 NL-SQL pairs

Categorization of Existing Studies

17

• We categorize the existing studies of NL2SQL Solutions with PLMs and LLMs
based on two dimensions: (1) Resources/Cost; (2) Data availability

18

PLM-based
Methods

LLM+Zero-shot
Methods

LLM+Few-shot
Methods

RASAT +
PICARD[15]

BRIDGE
v2[11]

C3 + ChatGPT +
Zero-Shot[1]

Zero-shot GPT-4[13]

ZERoNL2S
QL[5]

ChatGPT + CoT[21]

An Overview of NL2SQL Methods

DIN-SQL+GPT-
4[13]

DAIL-
SQL+GPT-4[3]

MCS-
SQL+GPT-4[6]Graphix +

PICARD[10]

Zero-shot CodeX[16]

RATSQL
+ GAP +

NatSQL[2]

T5 +
PICARD[1

7]

SC-
Prompt[4]

N-best
Rerankers +
PICARD[22]

RESDSQL
+ NatSQL[8]

Training LLM
Methods

Reward-SQL[13]

MAC-SQL+GPT-4[20]

OpenSearch-
SQL+GPT-4[7]

CHESS[18]

CHASE-
SQL[19]

Reasoning-
SQL[14]

Omni-SQL[21]

Arctic-
Text2SQL[12]

DTS-SQL[14]
SFT CodeS[9]

Categorization of Existing Studies

Few-Shot NL2SQL
• Basic Idea

• Utilizing the in-context learning capability of LLMs to generate SQL
queries from a few demonstration examples.

• Key Characteristics
• Requirement of a handful of examples à Reduction of annotation costs

• Technical Challenges
• How to represent the structure of the underlying database
• How to select and organize the demonstration examples

Few-Shot NL2SQL
• DAIL-SQL, by Alibaba

• Database Representation: representing database schema as CREATE TABLE
statements with complete primary/foreign key information

• Example Selection: combining question similarity and SQL query similarity, prioritizing
examples with both similar questions and similar SQL structures

• Example Organization: only preserving question-to-SQL mappings while removing
token-expensive database schema from examples

20
Gao, Dawei, et al. "Text-to-sql empowered by large language models: A benchmark evaluation." PVLDB, 17(5): 1132-1145, 2024.

Zero-shot NL2SQL
• Zero-shot NL2SQL
• A practical scenario for NL2SQL is that oftentimes, for a new test

environment, annotated NL-SQL pairs are time-consuming and labor-
intensive to acquire, and thus is not available

• Existing approaches may not perform well in this zero-shot NL2SQL
setting, as the new test environments may be very different
• New databases: an NL2SQL model trained on the Spider benchmark may not

perform well for domain-specific (e.g., academic or financial) databases
• New linguistic phenomena: varying linguistic phenomena (e.g.,

abbreviations, synonyms, etc.) in the test environments

21Can we have a NL2SQL model generalizable to new test environments

Limitation of Existing Solutions
• The LM-based approaches to NL2SQL fall into two categories
• Pre-trained language models (PLMs) such as BART and T5
• Large language models (LLMs) such as GPT and PaLM

• PLM-based methods (e.g., T5) may have limited generalizability in natural
language reasoning in the zero-shot setting

22

Limitation of Existing Solutions
• The LM-based approaches to NL2SQL fall into two categories
• Pre-trained language models (PLMs) such as BART and T5
• Large language models (LLMs) such as GPT and PaLM

• LLMs (e.g., gpt-3.5-turbo-0613) are capable of NL reasoning, but may not
achieve precise alignment on schema and data value due to “hallucination”

23

Limitations of Existing Solutions
• A systematic error analysis that illustrates insights into limitations

of the fine-tuned T5 and vanilla GPT-3.5

24Can we combine PLMs and LLMs to solve Zero-shot NL2SQL?

LLMs PLMs

Complex
NL

Reasoning
Schema

Alignment

Schema
Alignment

Complex
NL

Reasoning

200 error examples sampled from Dr.Spider (GPT-3.5 and T5 respectively)

The ZeroNL2SQL Framework
• ZeroNL2SQL breaks down the NL2SQL task into smaller sub-tasks
• Sub-task 1: SQL Sketch Generation

• Utilizing PLMs to generate a SQL sketch, with attributes to SELECT, tables in
FROM, and necessary keywords (e.g., ORDER BY) for composing the SQL query

• Sub-task 2: SQL Query Completion and Correction
• Utilizing LLMs to complete the missing information in the SQL sketch and

generate complete SQL queries, e.g., aligning with data values from the database

25
Zihui Gu, Ju Fan, Nan Tang, Songyue Zhang, Yuxin Zhang, Zui Chen, Lei Cao, Guoliang Li, Sam Madden, Xiaoyong Du: Combining Pre-Trained Language
Models and Large Language Models for Zero-Shot NL2SQL Generation. VLDB 2024.

Training LLMs for NL2SQL
• Basic Idea
• Training LLMs in two stages: (1) performing continual pre-training

(CPT) on SQL-related corpora to strengthen SQL knowledge, and (2)
conducting supervised fine-tuning (SFT) on curated NL2SQL datasets
to specialize in SQL geneartion.

• Key Characteristics
• Enhanced SQL domain knowledge: CPT injects rich understanding

of SQL syntax and semantics.
• Superior reasoning capabilities: SFT enables models to gain

stronger ability to parse complex natural language and map it to SQL
queries.

Training LLMs for NL2SQL
• CodeS proposes to develop a new text-to-SQL model built on open-source models.

27
Li, Haoyang, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan, Cuiping Li, and Hong Chen. "Codes:
Towards building open-source language models for text-to-sql." Proceedings of the ACM on Management of Data 2, no. 3 (2024): 1-28.

• Solution Overview:
• CodeS introduces a series of

open-source language models
(ranging from 1B to 15B
parameters) specifically tailored
for text-to-SQL tasks

• Built on top of StarCoder, CodeS
is further enhanced through CPT
and SFT on a curated 21.5GB
SQL-centric corpus.

Data Collection for CPT and SFT

28
Step 1: Collect SQL-related corpus Step 2: Incremental pre-training

• Curated CPT corpus: 11GB SQL-related data, 6GB NL-to-code data, and
4.5GB NL-related data
• SFT corpus: NL-SQL-458K, containing 458K SQL queries paired with

corresponding natural language questions
• Enhanced capabilities: improvements in both SQL generation and natural

language understanding

Data Augmentation for SFT

29Bi-directional augmentation

• Question-to-SQL: starting from real user questions, manually annotate, and expanding
using GPT-3.5

• SQL-to-Question: leveraging Spider-style templates, populating with new domain schemas,
and refining via GPT-3.5

• Enhanced capabilities: rapid domain adaptation with minimal annotation effort

Prompt formats used in data augmentation.

RL-based Training for NL2SQL
• Reinforcement learning based training for NL2SQL leverages execution

feedback and reasoning signals, and applies techniques such as DPO,
GRPO, and reward-based optimization to generate SQL queries.

• Key Characteristics:
• Stronger Reasoning: RL fosters structured, step-by-step reasoning for

better SQL generation
• Richer Feedback: dedicated rewards overcome sparsity, guiding

models more effectively
• Higher Accuracy & Generalization: outperform larger models across

benchmarks at lower cost

RL-based Training for NL2SQL
• Reasoning-SQL, RL-Enhanced NL2SQ with Partial Rewards

• Introducing the first RL-based framework for optimizing reasoning in LLMs for NL2SQL
• Leveraging Group Relative Policy Optimization (GRPO) for efficient and stable training
• Employing a novel suite of partial rewards to address the reward sparsity problem

31Pourreza, Mohammadreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, et al. "Reasoning-sql: Reinforcement learning with sql
tailored partial rewards for reasoning-enhanced text-to-sql." arXiv preprint arXiv:2503.23157 (2025).

A Suite of Partial Rewards
• Execution Accuracy Reward (RLEF): Binary reward for correct SQL execution
• LLM-as-a-Judge Reward (RLAIF): AI feedback for queries with zero execution accuracy
• Syntax Check Reward: Positive score for syntactically valid and executable queries
• Schema Linking Reward: Jaccard similarity between schema items in candidate vs. gold queries
• N-gram Similarity Reward: Token-level overlap measurement using Jaccard similarity

32

Process-Supervised Rewards for NL2SQL
• Reward-SQL: introducing Process Reward Models (PRMs) for NL2SQL

• PRM-Enhanced Test-Time Scaling: Adopting PRMs for test-time scaling for NL2SQL
• GRPO-Integrated Training: Incorporating PRMs into training via Group Relative Policy

Optimization to further enhance reasoning capabilities

33Zhang, Yuxin, Meihao Fan, Ju Fan, Mingyang Yi, Yuyu Luo, Jian Tan, and Guoliang Li. "Reward-sql: Boosting text-to-sql via stepwise
reasoning and process-supervised rewards." arXiv preprint arXiv:2505.04671 (2025).

Process-Supervised Rewards for NL2SQL
• SQL Query Decomposition: Breaks complex queries into step-by-step Common Table

Expressions (CTEs)
• Step-Level Executability: Each CTE produces concrete, verifiable intermediate results
• PRM-Compatible Structure: Enables fine-grained evaluation at each reasoning step

34

PRM-Involved GRPO Training
• GRPO Model Update: Leveraging GRPO to update the model with PRM

preferences, maintaining consistency between training and inference distributions to
further enhance test-time scaling capabilities.

• Combined Reward Structure: Process Reward (PR) + Outcome Reward (OR) for
comprehensive feedback

• Fine-Grained Advantages: Step-level advantages reflecting both solution quality
and internal step variations

35Online GRPO Training

Takeaways
• Architectural Simplification: Text-to-SQL has evolved from complex

multi-stage PLM pipelines to streamlined end-to-end training, with RL-
based frameworks eliminating auxiliary components while achieving
superior performance.
• Escalating Data Demands: Simplified architectures paradoxically require

exponentially more training data, making synthetic data generation
critical while demanding unprecedented quality and diversity for robust
generalization.
• Performance-Cost Trade-off: State-of-the-art methods introduce

substantial computational overhead, creating fundamental tensions
between model performance and practical deployment in resource-
constrained environments.

Tutorial Outline

• Problem Definition, Preliminaries, Benchmarks
• NL2SQL Solutions with PLMs and LLMs
• NL2SQL Solutions with LLM Agents
• Open Problems

37

What is the (Reasoning) Agent?

38https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action

https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action
https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action
https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action
https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action
https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action
https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action
https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action
https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action
https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action
https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action
https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action

Where Are We?
• CHASE-SQL (ICLR 2025, Google Cloud and Stanford)

• Utilizes the MinHash LSH to search for values related to the user query
• Multiple prompting strategies to generate various candidate SQL queries using LLMs,

and corrects SQL queries with execution errors through prompting LLMs.
• Employs an SQL selection agent fine-tuned specifically for the database to select the

final SQL from multiple candidates.

39

Closed-source
 LLMs

Where Are We?
• CHASE-SQL (ICLR 2025, Google Cloud and Stanford)

40

Key Limitations:
• Reliance on closed-source large models

• High cost (0.6 USD/query), making it difficult to widely deploy in real-world industrial scenarios.

• SQL selection agent requires fine-tuning
• The Google team fine-tuned the Gemini-1.5-Flash model specifically.
• Limited flexibility due to reliance on domain-specific data.

• Predefined and Fixed Reasoning Workflows

Closed-source
 LLMs

Where Are We?
• OpenSearch (SIGMOD 25, Alibaba)

• Modular Architecture: Divides the task into four stages (Preprocessing,
Extraction, Generation, and Refinement) and adds an Alignment module
to ensure consistency between steps.

• Intermediate Language: A custom language named SQL-Like is
designed to structure the model's reasoning process.

41

Closed-source
 LLMs

Where Are We?
• OpenSearch (SIGMOD 25, Alibaba)

42

Closed-source
 LLMs

Key Limitations:
• Reliance on closed-source large models

• Privacy Risks
• Rigidity of the Alignment Module:

• The alignment mechanism enforces consistency but risks over-constraining SQL
generation and limiting adaptability across scenarios.

• Predefined and fixed reasoning workflows

Where Are We?
• XiYan-SQL (SIGMOD 25, Alibaba)

• M-Schema: Uses column and value retrieval to select relevant schema items from DBs.
• Fine-tunes a base LLM on SQL-specific data, then creates multiple specialized SQL-

generation models by fine-tuning with diverse Text-to-SQL syntax datasets.
• Employs a fine-tuned SQL selection model to choose the best SQL from predictions

made by multiple generators.

43

Open-source LLMs

Where Are We?
• XiYan-SQL (SIGMOD 25, Alibaba)

44

Open-source LLMs

Key Limitations:
• High dependency on extensive domain-specific data.
• Significant costs associated with fine-tuning multiple models.
• Difficulty in rapid adaptation and generalization across varied scenarios.
• Predefined and Fixed Reasoning Workflows.

Key Takeaways

45

• Closed-source LLMs for Text-to-SQL:
• High inference API cost limits practical deployments.
• Potential data privacy concerns for sensitive applications.

• Open-source LLMs for Text-to-SQL:
• Dependence on extensive domain-specific data for model fine-tuning.
• Limited generalization capability across different use cases.

• Common Limitations in Existing Solutions:
• Predefined and fixed reasoning workflows restrict adaptability.
• Domain adaptation and generalization across DB and text queries

Where Are We Going?

46

High Inference API Cost

Challenges Key Idea

Open-source LLMs🔒 ⚙

Lower deployment cost and
improved flexibility

Expensive fine-tuning Training-free Paradigm🔧 🚀

Zero-shot reasoning without
additional tuning

Fixed Reasoning Dynamic Reasoning 🔄📌
Adaptive reasoning workflows

guided by task

Reasoning Agents
based on

Open-source LLMs

Our Goal

Alpha-SQL:
A Plug-and-Play NL2SQL Reasoning Framework

47
Boyan Li, Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025.

https://github.com/HKUSTDial/Alpha-SQL

Open-source
LLMs

Training-free
Paradigm

Dynamic
Reasoning

https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL

48

NL2SQL Human Workflow

Find the number of dog pets that are raised by female studentFind the number of dog pets that are raised by student

Step-1 NL Understanding

Step-2 Schema Linking and Database Content Retrieval

Pets

PetID PetType PetAge ...

Dog

Step-3 Translating the NL Intent into the SQL

Student

StuID Sex Age ...

F

Has_Pet

PetID StuID ...

Select count(*) FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid=T2.stuid
JOIN pets AS T3 ON T2.petid=T3.petid WHERE T1.sex=‘F’ AND T3.pettype=‘Dog’

Task Formulation: Mimic Human Experts

49

• Human Expert Workflow for Text-to-SQL

Understand
Intent

Link to
Schema

Design SQL
Logic Compose SQL Test

Yes
Q

DB
SQL

No

Task Formulation: Mimic Human Experts
• Human Expert Workflow for Text-to-SQL

• From Human Actions to Agent Actions

Understand
Intent

Link to
Schema

Design SQL
Logic Compose SQL Test

Yes
Q

DB
SQL

No

Understand Intent Question Rephrasing
👷 🤖

Link to Schema

(Revise, clarify ambiguities, rephrasing)

Schema Selection
Cell Value Selection

Design SQL Logic Column Function

SQL Generation

SQL Revision

Compose SQL

Validate & Iter.

(decides which tables / columns / values)

(joins, aggregations, functions)

(assemble an initial executable query)

(iteratively test, debug, and optimize the query)

Task Formulation: Mimic Human Experts

51

• From the Fixed Action to Dynamic Actions

• Human Expert Workflow for Text-to-SQL

Understand
Intent

Link to
Schema

Design SQL
Logic Compose SQL Test

Yes
Q

DB
SQL

No

Tree-based Search:
• Each edge corresponds to an agentic action

in the query construction process,
• Each node represents a reasoning state at a

specific step, and
• Each path corresponds to a sequence of SQL

construction actions for Text-to-SQL task.

52

Text-to-SQL as a Tree-based Search Problem

𝑞 = “What’s the rank of Bob in the
football match?”
𝐷 = “CREATE TABLE `players` (…)”

Column Value Thinking:
In the above question, there is a specific
filter about match type and player name.
So I need use `player`.`name` = ‘Bob’ and
`match`.`match_type` = ‘football’.

𝑎!: Column Value
Identification

𝑎": Column Function
Identification

𝑎#: SQL Generation

Column Function Thinking: …

SQL Generation Thinking:
Based on my previous thoughts, I need a
WHERE clause to filter the match type
and player, and there is no functions
needed. Thus, the final SQL query is:
SELECT T1.rank FROM players AS T1
JOIN matches AS T2 ON T1.id =
T2.player_id WHERE T1.name = ‘Bob’
AND T2.match_type = ‘football’;

𝒗𝟎

𝒗𝟏

𝒗𝟐

𝒗𝟑

Edges (Actions) Nodes (Reasoning States)

LLM-as-Action-Model

𝑎(: Termination
𝒗𝟒

Input

Output

Question Database

Question Database Previous
Actions

Action LLM Next State

𝑎* 𝑣!"#

LLM-as-Action-Model

Rephrase Question

Schema Selection

Column Value
Identification
Column Function Identification

SQL Generation

SQL Revision

Termination

𝑎+

𝑎,

𝑎!

𝑎"

𝑎#

𝑎-

𝑎(

Action Space

• Q1: How to select the next action (edge)?

• Q2: How to effectively navigate the vast search space?

• Q3: How to evaluate the quality of the candidate SQL queries?

Text-to-SQL as a Tree-based Search Problem

Q1 & Q2 • Monte Carlo Tree Search (MCTS) addresses this by balancing
exploration (testing uncertain actions) and exploitation
(choosing actions likely to yield good results)

Q3 • We need a self-supervised reward function since our goal is to avoid
reliance on labeled data

• Resampling the LLMs M times to compute the self-consistent scores

Alpha-SQL Solution Overview

54
Boyan Li, Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025.

https://github.com/HKUSTDial/Alpha-SQL

https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL

Alpha-SQL: Plug-and-Play Capabilities

55

Performance-Scale Trade-off Analysis

56

Agents: Small LLMs, Big Gains

Tutorial Outline

• Problem Definition, Preliminaries, Benchmarks
• NL2SQL Solutions with PLMs and LLMs
• NL2SQL Solutions with LLM Agents
• Open Problems

57

Rethinking: Limitations of NL2SQL Agent

58
Boyan Li, Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025.

https://github.com/HKUSTDial/Alpha-SQL

https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL

Rethinking: Limitations of NL2SQL Agent

59

L1: Efficiency is a significant limitation of MCTS with edge scaling:
• On average, it takes around 5 minutes to complete a single Text-to-SQL task.
• This severely restricts its applicability in real-world scenarios.

Boyan Li, Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025.
https://github.com/HKUSTDial/Alpha-SQL

https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL

Rethinking: Limitations of NL2SQL Agent

60

L1: Efficiency is a significant limitation of MCTS with edge scaling
• On average, it takes around 5 minutes to complete a single Text-to-SQL task.
• This severely restricts its applicability in real-world scenarios.

L2: Single LLM is prone to errors and lacks diverse
perspectives, reducing reasoning stability

Boyan Li, Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025.
https://github.com/HKUSTDial/Alpha-SQL

https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL

Rethinking: Limitations of NL2SQL Agent

61

L2: Efficiency is a significant limitation of MCTS with edge scaling
• On average, it takes around 5 minutes to complete a single Text-to-SQL task.
• This severely restricts its applicability in real-world scenarios.

L1: Single LLM is prone to errors and lacks diverse
perspectives, reducing reasoning stability

L3: Limited actions (Tools), constrained to
only predefined, LLM-based actions

Boyan Li, Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025.
https://github.com/HKUSTDial/Alpha-SQL

https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL

Rethinking: Limitations of NL2SQL
Agent

62

L1: Efficiency is a significant limitation of MCTS with edge scaling
• On average, it takes around 5 minutes to complete a single Text-to-SQL task.
• This severely restricts its applicability in real-world scenarios.

L2: Single LLM is prone to errors and lacks diverse
perspectives, reducing reasoning stability

L3: Limited actions (Tools), constrained to
only predefined, LLM-based actions

Boyan Li, Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025.
https://github.com/HKUSTDial/Alpha-SQL

These limitations highlight the need for more diverse
actions, efficient reasoning, and richer memory

https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL

63

(Alpha-SQL)
Limitation

Opportunity
Axis Design Lever (what to change)

L1. Efficiency
bottleneck

(MCTS is slow)

Planning Adaptive search budgets, routing by query difficulty, test-time compute
allocation

Tools Early pruning via validators / partial execution; cost-aware candidates

Memory Cache schema/context/results; reuse prior plans

L2. Reasoning
instability / low

diversity

Actions Multi-agent/committee, self-consistency, human-as-an-agent for
disambiguation

Perception Better query & schema understanding (scope detection, value
grounding)

L3. Limited actions &
tool use

Tools Add retrievers, value lookups, execution-guided rewrite, SQL checkers

Memory (1) Long context + vector memory for task state & user prefs;
(2) Metadata Management and Schema Interpretation

What Alpha-SQL Reveals About NL2SQL Agents

64

Perception

Query
Understanding

Schema
Understanding

Environment
Understanding

Optimization
Goal

Planning

Pre-Processing

SQL Generation

Post-Processing

Actions

Call LLMs

Call Tools

Call Humans

Tools

SQL Verifier

Query Executor

Memory

Vector
Database

Metadata

Knowledge

NL2SQL Agent

…

…

…

…

Opportunities for NL2SQL Agents: Five Key Aspects

65

Perception

Query
Understanding

Schema
Understanding

Environment
Understanding

Optimization
Goal

Planning

Pre-Processing

SQL Generation

Post-Processing

Actions

Call LLMs

Call Tools

Call Humans

Tools

SQL
Verifier

Query Executor

Memory

Vector
Database

Metadata

Knowledge

NL2SQL Agent

…

…

…

…

Opportunities for NL2SQL Agents: Five Key Aspects

😔 Execution ACC ～75% 😔Execution ACC ～30%

https://bird-bench.github.io/ https://spider2-sql.github.io/

Less proportion
Easy to Detect

Large proportion
Difficult to Detect

Types of Errors That Require Verification

List all students and their course grades. (including students who haven’t taken any courses)
Question:

Predicted SQL by NL2SQL methods:
SELECT s.name, e.grade
FROM student s
INNER JOIN enrollment e
ON s.id = e.id

This SQL is incorrect. The
join type is mismatched, and
the foreign key connection is
incorrect.

Semantic Errors Detection

Verifier

Research Gap: Lack of Robust Verifiers

NL2SQL-BUGs Benchmark for Verifier

Xinyu Liu, Shuyu Shen, Boyan Li, Nan Tang, Yuyu Luo: NL2SQL-BUGs: A Benchmark for Detecting
Semantic Errors in NL2SQL Translation. SIGKDD 2025

To systematically
analyze semantic errors,
we propose a two-level
taxonomy with

9 main type
31 subtype

to analysis semantic
errors in NL2SQL
translation.

Error Taxonomy

2,018 expert-annotated examples, 1,019
correct examples, 999 incorrect examples

NL2SQL-BUGs Benchmark

Xinyu Liu, Shuyu Shen, Boyan Li, Nan Tang, Yuyu Luo:
NL2SQL-BUGs: A Benchmark for Detecting Semantic

Errors in NL2SQL Translation. SIGKDD 2025

Opportunities: NL2SQL Agents
• Human-as-an-Agent and Human-in-the-Reasoning-Loop

• How can we dynamically integrate human experts into the reasoning loop to address
complex tasks beyond LLM agents‘ current capabilities and clarify the question ambiguities?

• Explainable and Interpretable SQL Reasoning Agents
• Users typically require explanations for the reasoning steps and decisions underlying SQL

generation (i.e., knowing both “what” and “why”).
• How can we design reasoning agents that transparently communicate their thought

processes, decisions, and final SQL statements to improve system transparency and foster
user trust?

• Metadata Management and Schema Interpretation
• Real-world databases commonly feature complex schemas, detailed metadata (e.g., column

annotations, table descriptions, foreign key constraints, data types).
• How can we enable data agents to effectively extract, manage, and utilize this metadata to

generate more accurate semantic mappings, informed reasoning processes, and precise
SQL generation?

74

Are NL2SQL Agents Enough?

75

Video

Table

Document

Image

NL2SQL
Agent

Table

Visualization

Insight Report

Insight Video

• Bound to SQL-only interaction
• Weak in cross-DB or heterogeneous sources

76

Video

Table

Document

Image

Data
Agents

Table

Visualization

Insight Report

Insight Video

• Unified Query Interface: SQL à Semantic Operators
• Multimodal Data Analysis
• Adaptive Reasoning and Orchestration
• Long-term Memory and Knowledge Augmentation
• Trustworthy and Cost-Aware Execution

Data Agent
q Data Agent: designed to autonomously

carry out data-related tasks with capabilities
for knowledge comprehension, automatic
planning, and self-reflection of LLMs

77

NL Query

Collaborate to determine
how to analyze the data

q Challenges:
• How can data agents understand queries, data, other agents, and tools?
• How can data agents orchestrate effective and efficient pipelines to

bridge the gaps between user requirements and underlying
heterogeneous data?

• How to schedule and coordinate agents/tools to improve effectiveness?

Guoliang Li et al. Data+AI: LLM4Data and Data4LLM. SIGMOD 2025
https://dbgroup.cs.tsinghua.edu.cn/ligl/papers/SIGMOD2025-Data+LLM.pdf

https://dbgroup.cs.tsinghua.edu.cn/ligl/papers/SIGMOD2025-Data+LLM.pdf
https://dbgroup.cs.tsinghua.edu.cn/ligl/papers/SIGMOD2025-Data+LLM.pdf
https://dbgroup.cs.tsinghua.edu.cn/ligl/papers/SIGMOD2025-Data+LLM.pdf

Data Agent: A High-level View

78https://github.com/HKUSTDial/DataAgents_Handbook

https://github.com/HKUSTDial/DataAgents_Handbook

79https://github.com/HKUSTDial/DataAgents_Handbook

https://github.com/HKUSTDial/DataAgents_Handbook

80

81

Perception

Task
Understanding

Environment
Understanding

Model
Understanding

Tool
Understanding

Optimization
Goal

Planning

Task
Decomposition

COT/GOT

Reflection

Meta-Agent

Actions

Call LLMs

Call Data
Science Tools

Call Humans

Tools

ML Libs

Feature Libs

DB Tools

Viz Tools

Verifier

Memory

Vector Database

Metadata

Knowledge

Semantic
Catalog

Semantic
Context

Data Agent

…

…

…

Opportunities for Data Agents: Five Key Aspects

…

…

From NL2SQL Agents to Data Agents
• Cross-DB & heterogeneous orchestration

• Plan over multiple stores/APIs with join-path inference and result fusion; measure
success beyond single-DB EM

• Semantic operator layer
• Lift from raw SQL to semantic operators that unify tabular, text, image, and report

generation tasks—support tableà vizà insight report/video workflows
• Meta-planning & reflection

• A meta-agent that decomposes tasks, schedules tools/agents, and reflects with
feedback loops

• Memory & Semantic Catalog
• Unified task-specific+ long-term memory;
• Auto-induce units, constraints, keys, value normalizations, synonyms, KPI definitions,

policies, lineage from DDL/docs/logs/queries;
82https://github.com/HKUSTDial/awesome-data-agents

https://github.com/HKUSTDial/awesome-data-agents
https://github.com/HKUSTDial/awesome-data-agents
https://github.com/HKUSTDial/awesome-data-agents
https://github.com/HKUSTDial/awesome-data-agents
https://github.com/HKUSTDial/awesome-data-agents

Thanks!
https://github.com/HKUSTDial/NL2SQL_Handbook

https://github.com/HKUSTDial/awesome-data-agents
http://luoyuyu.vip

yuyuluo@hkust-gz.edu.cn

NL2SQL:
Paper List & Slides

Data Agents:
Paper List

https://github.com/HKUSTDial/NL2SQL_Handbook
mailto:yuyuluo@hkust-gz.edu.cn
mailto:yuyuluo@hkust-gz.edu.cn
mailto:yuyuluo@hkust-gz.edu.cn
mailto:yuyuluo@hkust-gz.edu.cn
mailto:yuyuluo@hkust-gz.edu.cn
http://luoyuyu.vip/
mailto:yuyuluo@hkust-gz.edu.cn
mailto:yuyuluo@hkust-gz.edu.cn
mailto:yuyuluo@hkust-gz.edu.cn

