
157

GoodCore: Data-effective and Data-efficient Machine
Learning through Coreset Selection over Incomplete Data

CHENGLIANG CHAI, Beijing Institute of Technology, China

JIABIN LIU, Beijing Institute of Technology, China
NAN TANG, QCRI / HKUST (GZ), Qatar / China

JU FAN, Renmin University of China, China

DONGJING MIAO, Harbin Institute of Technology, China

JIAYI WANG, Tsinghua University, China
YUYU LUO, Tsinghua University, China
GUOLIANG LI*, Tsinghua University, China

Given a dataset with incomplete data (e.g., missing values), training a machine learning model over the

incomplete data requires two steps. First, it requires a data-effective step that cleans the data in order to

improve the data quality (and the model quality on the cleaned data). Second, it requires a data-efficient step

that selects a core subset of the data (called coreset) such that the trained models on the entire data and

the coreset have similar model quality, in order to improve the training efficiency. The first-data-effective-

then-data-efficient methods are too costly, because they are expensive to clean the whole data; while the

first-data-efficient-then-data-effective methods have lowmodel quality, because they cannot select high-quality

coreset for incomplete data.

In this paper, we investigate the problem of coreset selection over incomplete data for data-effective and

data-efficient machine learning. The essential challenge is how to model the incomplete data for selecting

high-quality coreset. To this end, we propose the GoodCore framework towards selecting a good coreset

over incomplete data with low cost. To model the unknown complete data, we utilize the combinations of

possible repairs as possible worlds of the incomplete data. Based on possible worlds, GoodCore selects an

expected optimal coreset through gradient approximation without training ML models. We formally define

the expected optimal coreset selection problem, prove its NP-hardness, and propose a greedy algorithm with

an approximation ratio. To make GoodCore more efficient, we further propose optimization methods that

incorporate human-in-the-loop imputation or automatic imputation method into our framework. Experimental

results show the effectiveness and efficiency of our framework with low cost.

CCS Concepts: • Computing methodologies→Machine learning; Machine learning approaches; Machine
learning algorithms; • Information systems→ Data cleaning.

Additional Key Words and Phrases: data-centric AI; machine learning; data cleaning; coreset selection

*Guoliang Li is the corresponding author.

Authors’ addresses: Chengliang Chai, ccl@bit.edu.cn, Beijing Institute of Technology, China; Jiabin Liu, liujb19@mails.

tsinghua.edu.cn, Beijing Institute of Technology, China; Nan Tang, ntang@hbku.edu.qa, QCRI / HKUST (GZ), Qatar / China;

Ju Fan, fanj@ruc.edu.cn, Renmin University of China, China; Dongjing Miao, miaodongjing@hit.edu.cn, Harbin Institute of

Technology, China; Jiayi Wang, jiayi-wa20@mails.tsinghua.edu.cn, Tsinghua University, China; Yuyu Luo, luoyy18@mails.

tsinghua.edu.cn, Tsinghua University, China; Guoliang Li*, liguoliang@tsinghua.edu.cn, Tsinghua University, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/6-ART157

https://doi.org/10.1145/3589302

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

https://doi.org/10.1145/3589302

157:2 Chengliang Chai et al.

ACM Reference Format:
Chengliang Chai, Jiabin Liu, Nan Tang, Ju Fan, Dongjing Miao, Jiayi Wang, Yuyu Luo, and Guoliang Li*. 2023.

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete

Data. Proc. ACM Manag. Data 1, 2, Article 157 (June 2023), 27 pages. https://doi.org/10.1145/3589302

1 INTRODUCTION
Data-effective machine learning (ML) (a.k.a. data-centric AI [64]) aims at obtaining high-quality

training data to release the value of AI, because it is well-known that dirty data may severely

degrade the performance of ML models [18, 63].

Data-efficient ML focuses on making the training process more efficient. A commonly used

strategy is to select a core subset of training data (or coreset) [23, 60] to represent the entire dataset

such that ML models trained on the coreset can achieve similar performance to the ML models

trained on the entire dataset.

Apparently, users desire both data-effective ML (for training better ML models) and data-efficient

ML (for saving training cost). In this work, our main goal is to support both data-effective and

data-efficient ML over incomplete datawhere there are many missing values, which is very common

in real-world scenarios [18, 56, 78].

Running data-effective and data-efficient tools sequentially. Intuitively, we can either run

data imputation methods first for data-effective and then run coreset selection algorithms denoted

by C(·) for data-efficient, or vice versa. Moreover, for data-effective solutions through data cleaning,

we generally consider two cases, either human-based solutions denoted by H(·) or automatic

solutions denoted by A(·). In summary, we have the following four cases, as shown in Figure 1:

• First data-effective (impute) then data-efficient (coreset):

(1) Impute-Human: H(D) → Coreset: C(H(D))
(2) Impute-Auto: A(D) → Coreset: C(A(D))

• First data-efficient (coreset) then data-effective (impute):

(3) Coreset: C(D) → Impute-Human: H(C(D))
(4) Coreset: C(D) → Auto-Human: A(C(D))

Next let’s discuss the pros and cons of the above approaches.

Case (1) has high human cost, low machine cost, and high accuracy in terms of the trained ML

models. Case (2) has zero human cost, low machine cost, but with low accuracy because automatic

imputation may not be good enough. Case (3) has low human cost, low machine cost, but with low

accuracy because corset selection over a dirty dataset may not ensure to compute a “good” coreset.

Case (4) has no human cast, low machine cost, but with low accuracy with the similar reason as (3).

The comparison of the above four methods can be found in Figure 2.

Our goal. Clearly, a primary goal is to achieve high accuracy for ML models, where only case (1)

can achieve. Case (2) achieves low accuracy because automatic imputation is hard to be accurate.

The main obstacle for making (1) practical is its high human cost. Hence, ourmain goal is to achieve
high accuracy with no or low human cost, and with low machine cost.

Consider cases (3) and (4), the main reason for them to achieve low accuracy is because they

cannot compute a good coreset directly from the dirty data. Intuitively, if we can compute a good

coreset directly from the dirty data, we can cheaply clean the coreset to achieve high accuracy,

where the “goodness” means that the subset of tuples selected from the dirty data is similar to the

subset of tuples selected from the clean data.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

https://doi.org/10.1145/3589302

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:3

H(D)
))

(1) C(H(D))

Impute

Human
55

Auto))
Coreset

44

**
A(D)

55

(2) C(A(D))

D

<<

""

Data-effective→ Data-efficient

Data-efficient→ Data-effective

//

(3) H(C(D))

Coreset
// C(D) // Impute

Human
44

Auto
**
(4) A(C(D))

Fig. 1. Sequential methods.

Solution Accuracy Human Cost Machine Cost
(1) C(H(D)) High High Low

(2) C(A(D)) Low None Low

(3) H(C(D)) Low Low Low

(4) A(C(D)) Low None Low

Our goal High None or Low Low

(5) H(G(D)) High Low High

(6) A(G(D)) Medium None High

(7) G(D,⟲H) High Low Low

(8) G(D,⟲A) Medium None Low

Fig. 2. A comparison of different approaches (1–4: sequential methods; 5–8: our solutions).

(7) G(D,⟲H) (5) H(G(D))

D // GoodCore //
Human⟲ 44

Auto⟲ **
G(D) // Impute

Human
55

Auto
))

(8) G(D,⟲A) (6) A(G(D))

Fig. 3. Our proposal and its variants.

Challenge. The main challenge of computing a good coreset from dirty data is to accurately

estimate the ground truth of each missing value; otherwise, we cannot select a coreset to well

represent the clean data. This is a known hard problem because each missing value may have

multiple possible repairs. Also, because a coreset selection algorithm is typically iterative that each

tuple is selected per iteration [58], selecting a bad tuple may cause cascade amplification to the

following iterations, resulting in a bad coreset.

Our proposal. To tackle the above challenge, we model the combinations of possible repairs as

possible worlds of the original dirty data D. We then formulate it as an optimization problem for

selecting an expected optimal coreset that can represent the possible worlds of D via gradient

approximation without training in advance. We prove this problem to be NP-hard. We propose an

approximate algorithm, called GoodCore, denoted by G(·), with the main idea to iteratively add a

tuple with the highest utility into the coreset. After a good coreset is computed, we can either use

human imputation or automatic imputation to impute the data, as shown in Figure 3. We further

elaborate these two methods below:

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

157:4 Chengliang Chai et al.

(5) GoodCore: G(D) → Impute-Human: H(G(D))
(6) GoodCore: G(D) → Impute-Auto: A(G(D))

However, one main drawback is that modeling possible worlds ofD is computationally expensive,

which hinders the practicability of the GoodCore algorithm. To address this high computational

cost problem, we further propose optimizationmethods to integrate imputation-in-the-loop (with

either humans or automatic methods) into the GoodCore algorithm (see methods 7 and 8 in Figure 3).

To this end, the optimized algorithms can significantly reduce the number of possible worlds, thus

achieving low computational cost.

(7) GoodCore with human-in-the-loop imputation: G(D,⟲H)

(8) GoodCore with machine-in-the-loop imputation: G(D,⟲A)

A comparison of methods (5)–(8) is given in Figure 2. Note that method (7) is the best solution

because it can achieve a high ML accuracy with low human cost and low machine cost.

Contributions We make the following contributions.

• Two birds with one stone.We study the problem of solving both data-effective and data-efficient

ML in one framework, which is an important but not addressed problem. (Section 3)

• NP-hardness and approximate solutions.We prove the NP-hardness of the problem.We propose

a greedy algorithm with an approximate ratio. (Section 4)

• Optimizations.We develop optimization techniques that integrate imputation-in-the-loop

into the coreset selection process, to improve the efficiency while achieving high accuracy.

We also analyze the convergence rate of our method and theoretically prove that it can

converge fast. (Section 5)

• Experiments.We conduct extensive experiment on 6 real-world datasets and compare with

10 baselines to show that GoodCore can select a well-performed coreset to achieve both

data-effective and data-efficient ML while consuming a low human cost. (Section 6)

2 BACKGROUND OF CORESET SELECTION
In this section, we introduce the background of coreset selection on complete data, denoted by Dc .

2.1 Gradient Descent for Machine Learning
Gradient descent [39] is the most typical optimization algorithm to train ML models. At a high

level, it tweaks the parameters iteratively to minimize a given convex and differentiable function to

its local minimum.

Let Dc = {t1, t2, ..., tn} be a set of train tuples (without missing values), where ti = (xi , yi),
xi ∈ Rd denotes the vector of features and yi denotes the corresponding label. The goal of training

on Dc is to find the best parameter θ ∗ of an model by minimizing the loss:

θ ∗ = argmin

θ ∈ϑ
f (θ), f (θ) =

1

n

n∑
i=1

fi (θ , ti) (1)

where ϑ is the parameter space. For ease of representation, we abbreviate fi (θ , ti) as fi (θ) to
represent the loss of the i-th train example. Generally speaking, the gradient descent approach is

always applied to find the minimizer of Eq. 1, where the full gradient (sum of the gradients over

all training tuples), denoted by ∇f (θ) =
∑n

i=1 ∇fi (θ), has to be computed iteratively.

Besides incremental gradient methods like stochastic gradient descent (SGD) that can be leveraged

to accelerate the iterative gradient computation, there are other popular and orthogonal methods,

such as coreset, which will be discussed next.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:5

2.2 Coreset over Complete Data

Coreset. To make training more efficient, instead of learning from entire Dc , one research question

is that whether we can compute a small subset C(Dc) of Dc such that learning with C(Dc) can

hopefully achieve the same performance as learning with Dc . This small selected subset is called

coreset [23, 60]. In the following, we simply write C(Dc) as C when it is clear from the context.

The state-of-the-art coreset selection solutions are mostly based on gradient approximation [34,

58]. Suppose that θ denotes the parameter of an ML model trained over the full dataset, and θ ′

denotes the parameter of the same model trained over the coreset. Intuitively, the objective of

gradient approximation for coreset selection is to make ∇f (θ ′) as close as possible to ∇f (θ). To
this end, existing solutions focus on selecting the coreset that minimizes the upper bound of gradient
approximation error (∥∇f (θ) − ∇f (θ ′)∥). Next, let’s formally define it from scratch.

Gradient-based coreset selection is to minimize the gradient approximation error (GA er-
ror) between the full gradient w.r.t. Dc and the weighted sum of gradients w.r.t. the coreset C
(or coreset gradient). Formally, Eq. 2 tries to minimize the GA error by considering all possible

parameters θ ∈ ϑ (i .e ., max

θ ∈ϑ
), where “∥ · ∥” denotes the normed difference. Next, we introduce the

coreset gradient.

C∗ = argmin

C⊆Dc ,w j ≥0

max

θ ∈ϑ
∥

n∑
i=1

∇fi (θ)︸ ︷︷ ︸
full gradient

−

|C |∑
j=1

w j∇fγ (j)(θ)︸ ︷︷ ︸
coreset gradient︸ ︷︷ ︸

gradient approximation error

∥,

s .t . |C | ≤ K

(2)

Because the coreset is a subset of the complete dataset (i .e ., C ⊆ Dc), we use γ (j) = i (where
j ∈ [1, |C |], i ∈ [1,n]) to denote that the j-th tuple inC (denoted by c j) is the i-th tuple in Dc , i .e ., ti .
In other words, γ is an index mapping from C to Dc .

Recall that the key idea of the coreset is to use a subset of tuples to represent the entire set. Eq. 2
potentially contains another important mapping ϕ from Dc to C to indicate this, i .e ., ϕ(i) = j, i ∈
[1,n], j ∈ [1, |C |], which is highly related to the weight. Specifically, let ϕ(i) = j denote that we
will assign ti to c j (use c j to represent ti) and use ∇fγ (j) to represent ∇fi . Each ti will be assigned
to one and only one c j , but each c j might be assigned with multiple tuples in Dc . Based on ϕ,
w j is defined as the weight of the c j , which is the number of tuples in Dc assigned to the c j , i .e .,
w j = |{ti |ϕ(i) = j, i ∈ [1,n]}| (c j is utilized to representw j tuples in Dc).

Next let’s use an example to better illustrate Eq. 2.

Example 1. Let’s consider a case of the gradients of each tuple, as shown in Figure 4. Suppose that
for any θ , ∇f1(θ) ≈ ∇f2(θ), ∇f3(θ) ≈ ∇f4(θ) ≈ ∇f5(θ) ≈ ∇f6(θ) and ∇f7(θ) ≈ ∇f8(θ). In this case,
based on Eq. 2, if one wants to find an optimal coreset with a size of 3, i .e ., K = 3, the solution can
be C∗ = {t2, t5, t7} (γ (1) = 2,γ (2) = 5 and γ (3) = 7), associated withw1 = 2,w2 = 4,w3 = 2 because
ϕ(1) = ϕ(2) = 1,ϕ(3) = ϕ(4) = ϕ(5) = ϕ(6) = 2 and ϕ(7) = ϕ(8) = 3. In this way,C∗ can be one of the

optimal coresets that can well approximate the full gradient because ∥
8∑
i=1

∇fi (θ) −
3∑
j=1

w j∇fγ (j)(θ)∥ is

minimized, which is close to 0.

Key observation. We can observe from Example 1 that in order to minimize the GA error, we

should set ϕ(i) = j , where ∇fi and ∇fγ (j) are likely to be close. Therefore, computing the coreset is

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

157:6 Chengliang Chai et al.

Dataset Dc

Coreset C rf1(✓)

<latexit sha1_base64="zerkKn73ntHSuT3BprCQF7JrI6A=">AAADRHicjVLLSsNAFD2N7/qqunQTLIJuSiKKLkU3LhWsCq2USZxqME1CMhFL8Vfc6pf4D/6BgjtxK54ZI/ig6oS0d84959y5k+slYZApx7kvWQODQ8Mjo2Pl8YnJqenKzOxBFuepL+t+HMbpkScyGQaRrKtAhfIoSaXoeKE89M63df7wQqZZEEf7qpvI4444jYJ24AtFqFWZbUbCC4XdbrlLTXUmlVhuVapOzTHL/hm4RVBFsXbjmdIkmjhBDB85OpCIoBiHEMj4NODCQULsGD1iKaPA5CWuUKY2J0uSIYie8/eUu0aBRtxrz8yofVYJ+aZU2likJiYvZayr2SafG2eN9vPuGU99ti7/vcKrQ1ThjOhfug/mf3W6F4U2NkwPAXtKDKK78wuX3NyKPrn9qStFh4SYjk+YTxn7Rvlxz7bRZKZ3fbfC5B8MU6N67xfcHI+/dufRtf8X0fm/GAnP2ObpdTXNK3Oa3O+z8zM4WKm5q7W1vdXq5lYxV6OYxwKWODvr2MQOdlFnpUtc4wa31p31ZD1bL+9Uq1Ro5vBlWa9vybiscw==</latexit>

rf2(✓)

<latexit sha1_base64="vDrytwQGdBtuM9QNFwrPWAZBALY=">AAADRHicjVLLSsNAFD2Nr1pfbV26CRZBNyUVRZeiG5cVbBWslEmcajBNQjIRRfwVt/ol/oN/oOBO3IpnxhR84GNC2jvnnnPu3Ml148BPlePcF6yh4ZHRseJ4aWJyanqmXKm20yhLPNnyoiBK9l2RysAPZUv5KpD7cSJF3w3knnu6pfN7ZzJJ/SjcVRexPOyL49Dv+Z5QhLrlaicUbiDsXnd5saNOpBJL3XLNqTtm2d+DRh7UkK9mVClMoYMjRPCQoQ+JEIpxAIGUzwEacBATO8QlsYSRb/ISVyhRm5ElyRBET/l7zN1Bjobca8/UqD1WCfgmVNpYoCYiL2Gsq9kmnxlnjf7kfWk89dku+O/mXn2iCidE/9INmP/V6V4Uelg3PfjsKTaI7s7LXTJzK/rk9oeuFB1iYjo+Yj5h7Bnl4J5to0lN7/puhck/GKZG9d7LuRkef+3OpevPX0Tn/2LEPGOPp9fVNK/EaWp8nZ3vQXu53lipr+6s1DY287kqYg7zWOTsrGED22iixUrnuMYNbq0768l6tl7eqVYh18zi07Je3wDMjax0</latexit>

rf3(✓)

<latexit sha1_base64="kocX5M+nJsGOoiaVEKgiyTfKhoQ=">AAADRHicjVLLSsNAFD2N7/qqdekmWATdlFQruhTduKxgbcFKmcSpBtMkJBNRxF9xq1/iP/gHCu7ErXhmjOADHxPS3jn3nHPnTq4bB36qHOeuYA0MDg2PjI4Vxycmp6ZLM+W9NMoSTza9KIiStitSGfihbCpfBbIdJ1L03UC23JMtnW+dyiT1o3BXncfyoC+OQr/ne0IR6pbKnVC4gbB73ZXFjjqWSix1SxWn6phlfw9qeVBBvhrRTGESHRwigocMfUiEUIwDCKR89lGDg5jYAS6IJYx8k5e4RJHajCxJhiB6wt8j7vZzNORee6ZG7bFKwDeh0sYCNRF5CWNdzTb5zDhr9CfvC+Opz3bOfzf36hNVOCb6l+6d+V+d7kWhh3XTg8+eYoPo7rzcJTO3ok9uf+hK0SEmpuND5hPGnlG+37NtNKnpXd+tMPl7w9So3ns5N8PDr925dP35i+j8X4yYZ+zx9Lqa5hU5TbWvs/M92Fuu1urV1Z16ZWMzn6tRzGEei5ydNWxgGw00WekMV7jGjXVrPVpP1vMb1Srkmll8WtbLK89irHU=</latexit>

rf4(✓)

<latexit sha1_base64="KfAeLWN9KNyHEFEZu0xKfepx0pw=">AAADRHicjVLLSsNAFD2N7/qqunQTLIJuSioVXRbduFSwWrBSJnGqwTQJyUSU4q+41S/xH/wDBXfiVjwzpuCDqhPS3jn3nHPnTq4bB36qHOehYA0Nj4yOjU8UJ6emZ2ZLc/MHaZQlnmx4URAlTVekMvBD2VC+CmQzTqTouoE8dM+3df7wQiapH4X76iqWx11xGvod3xOKULs03wqFGwi7066ttNSZVGK1XSo7Fccs+2dQzYMy8rUbzRWm0cIJInjI0IVECMU4gEDK5whVOIiJHaNHLGHkm7zENYrUZmRJMgTRc/6ecneUoyH32jM1ao9VAr4JlTaWqYnISxjrarbJZ8ZZo4O8e8ZTn+2K/27u1SWqcEb0L12f+V+d7kWhg03Tg8+eYoPo7rzcJTO3ok9uf+pK0SEmpuMT5hPGnlH279k2mtT0ru9WmPyjYWpU772cm+Hp1+5cug7+Ijr/FyPmGTs8va6meUVOU/X77PwMDtYq1Vplfa9Wrm/lczWORSxhhbOzgTp2sIsGK13iBre4s+6tZ+vFev2gWoVcs4Avy3p7B9I3rHY=</latexit>

rf5(✓)

<latexit sha1_base64="JPuUZZmEJAmS43mDOXoTHqJzbyQ=">AAADRHicjVLLSsNAFD2Nr1pftS7dBIugm5KKokvRjUsFq0IrZRKnGkyTkExEKf6KW/0S/8E/UHAnbsUzYwQf1Doh7Z1zzzl37uS6ceCnynEeCtbQ8MjoWHG8NDE5NT1Tnq0cpFGWeLLhRUGUHLkilYEfyobyVSCP4kSKrhvIQ/d8W+cPL2SS+lG4r65iedwVp6Hf8T2hCLXLlVYo3EDYnfbaUkudSSWW2+WqU3PMsn8H9TyoIl+70WxhCi2cIIKHDF1IhFCMAwikfJqow0FM7Bg9Ygkj3+QlrlGiNiNLkiGInvP3lLtmjobca8/UqD1WCfgmVNpYpCYiL2Gsq9kmnxlnjfbz7hlPfbYr/ru5V5eowhnRQbpP5n91uheFDjZMDz57ig2iu/Nyl8zcij65/aUrRYeYmI5PmE8Ye0b5ec+20aSmd323wuQfDVOjeu/l3AxPf3bn0rX/F9H5QYyYZ+zw9Lqa5pU4TfWfs/M7OFip1Vdra3ur1c2tfK6KmMcCljg769jEDnbRYKVL3OAWd9a99Wy9WK8fVKuQa+bwbVlv79UMrHc=</latexit>

rf6(✓)

<latexit sha1_base64="2ROidGJGok4e2UO3AWj9m6nt1Jk=">AAADRHicjVLLSsNAFD2N7/qqdekmWATdlFTqYym6cVnB2oKVMolTDaZJSCaiiL/iVr/Ef/APFNyJW/HMGMEHPiakvXPuOefOnVw3DvxUOc5dwRoYHBoeGR0rjk9MTk2XZsp7aZQlnmx6URAlbVekMvBD2VS+CmQ7TqTou4FsuSdbOt86lUnqR+GuOo/lQV8chX7P94Qi1C2VO6FwA2H3uquLHXUslVjqlipO1THL/h7U8qCCfDWimcIkOjhEBA8Z+pAIoRgHEEj57KMGBzGxA1wQSxj5Ji9xiSK1GVmSDEH0hL9H3O3naMi99kyN2mOVgG9CpY0FaiLyEsa6mm3ymXHW6E/eF8ZTn+2c/27u1SeqcEz0L90787863YtCD+umB589xQbR3Xm5S2ZuRZ/c/tCVokNMTMeHzCeMPaN8v2fbaFLTu75bYfL3hqlRvfdyboaHX7tz6frzF9H5vxgxz9jj6XU1zStymmpfZ+d7sLdcrdWrKzv1ysZmPlejmMM8Fjk7a9jANhpostIZrnCNG+vWerSerOc3qlXINbP4tKyXV9fhrHg=</latexit>

rf7(✓)

<latexit sha1_base64="T5ExnTwSj82eOmlt8iyK8r/eN7w=">AAADRHicjVLLSsNAFD2Nr1pftS7dBIugm5KKokvRjUsFq0IrZRKnGkyTkExEKf6KW/0S/8E/UHAnbsUzYwQf1Doh7Z1zzzl37uS6ceCnynEeCtbQ8MjoWHG8NDE5NT1Tnq0cpFGWeLLhRUGUHLkilYEfyobyVSCP4kSKrhvIQ/d8W+cPL2SS+lG4r65iedwVp6Hf8T2hCLXLlVYo3EDYnfb6UkudSSWW2+WqU3PMsn8H9TyoIl+70WxhCi2cIIKHDF1IhFCMAwikfJqow0FM7Bg9Ygkj3+QlrlGiNiNLkiGInvP3lLtmjobca8/UqD1WCfgmVNpYpCYiL2Gsq9kmnxlnjfbz7hlPfbYr/ru5V5eowhnRQbpP5n91uheFDjZMDz57ig2iu/Nyl8zcij65/aUrRYeYmI5PmE8Ye0b5ec+20aSmd323wuQfDVOjeu/l3AxPf3bn0rX/F9H5QYyYZ+zw9Lqa5pU4TfWfs/M7OFip1Vdra3ur1c2tfK6KmMcCljg769jEDnbRYKVL3OAWd9a99Wy9WK8fVKuQa+bwbVlv79q2rHk=</latexit>

rf8(✓)

<latexit sha1_base64="toAZDP+zUHuBderhVFrHQMj7GqY=">AAADRHicjVLLSsNAFD2Nr1pftS7dBIugm5KKokvRjUsFawtWyiRONZgmIZmIRfwVt/ol/oN/oOBO3IpnxhR84GNC2jvnnnPu3Ml148BPlePcF6yh4ZHRseJ4aWJyanqmPFs5SKMs8WTDi4IoabkilYEfyobyVSBbcSJFzw1k0z3b1vnmuUxSPwr3VT+WRz1xEvpd3xOKUKdcaYfCDYTd7WwstdWpVGK5U646Nccs+3tQz4Mq8rUbzRam0MYxInjI0INECMU4gEDK5xB1OIiJHeGSWMLIN3mJK5SozciSZAiiZ/w94e4wR0PutWdq1B6rBHwTKm0sUhORlzDW1WyTz4yzRn/yvjSe+mx9/ru5V4+owinRv3QD5n91uheFLjZMDz57ig2iu/Nyl8zcij65/aErRYeYmI6PmU8Ye0Y5uGfbaFLTu75bYfIPhqlRvfdybobHX7tz6frzF9H5vxgxz9jl6XU1zStxmupfZ+d7cLBSq6/W1vZWq5tb+VwVMY8FLHF21rGJHeyiwUoXuMYNbq0768l6tl7eqVYh18zh07Je3wDdi6x6</latexit>

w1rf�(1)(✓)

<latexit sha1_base64="nI92JpGxpE91cwOAtsE4C4IkvMk=">AAADVHicjVLLTttAFD2JCaWB0ADLbqxElZJNZCMqukRlwzJIDYlEUDQ2k8TCL9ljKhRl36/pFr4EqX/Q/kMXPTMYiYeAjuXkzrnnnDt3fL00DHLlOL8qVWultvpu7X19faOx+aG5tX2SJ0Xmy4GfhEk28kQuwyCWAxWoUI7STIrIC+XQuzjU+eGlzPIgib+pq1SeRWIWB9PAF4rQpNlafF9OXHscCy8U9nSyGM9EFImO2112xmoulehOmm2n55hlPw/cMmijXP1kq9LAGOdI4KNABIkYinEIgZzPKVw4SImdYUEsYxSYvMQSdWoLsiQZgugFf2fcnZZozL32zI3aZ5WQb0aljU/UJORljHU12+QL46zRl7wXxlOf7Yr/XukVEVWYE31Ld8/8X53uRWGKL6aHgD2lBtHd+aVLYW5Fn9x+0JWiQ0pMx+fMZ4x9o7y/Z9toctO7vlth8r8NU6N675fcAn9e7c6j68tfROffYqQ845Sn19U0r85pcp/OzvPgZLfn7vU+H++1D76Wc7WGj2ihw9nZxwGO0MeAlX7gJ65xU72t/rUsq3ZHrVZKzQ4eLWvzH7Eqr90=</latexit>

w3rf�(3)(✓)

<latexit sha1_base64="Ydn/JkCv8Zr7QnBzWT7OUoXi2Hs=">AAADVHicjVLLSsNAFD1tfNZX1aWbYBHqpqQ+0KXoxqWCVcFKmcRpDeZFMlGkdO/XuNUvEfwD/QcXnhkj+MDHhLR3zj3n3LmT6yaBnynHeSyVraHhkdGx8crE5NT0THV27jCL89STLS8O4vTYFZkM/Ei2lK8CeZykUoRuII/cix2dP7qUaebH0YG6TuRpKHqR3/U9oQh1qov9q0Fn1W5Hwg2E3e302z0RhqK+ujyot9W5VGK5U605Dccs+3vQLIIairUXz5am0MYZYnjIEUIigmIcQCDjc4ImHCTETtEnljLyTV5igAq1OVmSDEH0gr897k4KNOJee2ZG7bFKwDel0sYSNTF5KWNdzTb53Dhr9CfvvvHUZ7vmv1t4hUQVzon+pXtn/lene1HoYtP04LOnxCC6O69wyc2t6JPbH7pSdEiI6fiM+ZSxZ5Tv92wbTWZ613crTP7JMDWq917BzfH8a3cuXX/+Ijr/FyPhGbs8va6meRVOU/Pr7HwPDlcazbXG+v5abWu7mKsxLGARdc7OBrawiz20WOkGt7jDffmh/GJZ1vAbtVwqNPP4tKzpV7ysr+E=</latexit>

w2rf�(2)(✓)

<latexit sha1_base64="Rqva+NyWJO/RQhot9AWZpwpFZrM=">AAADVHicjVLLSsNAFD1tfNZX1aWbYBHqpqRF0aXoxqWCVcFKmcRpDeZFMlGkdO/XuNUvEfwD/QcXnhkj+MDHhLR3zj3n3LmT6yaBnynHeSyVrZHRsfGJycrU9MzsXHV+4TCL89STbS8O4vTYFZkM/Ei2la8CeZykUoRuII/cix2dP7qUaebH0YG6TuRpKPqR3/M9oQh1q8uDq2G3ZXci4QbC7nUHnb4IQ1FvrQ7rHXUulVjtVmtOwzHL/h40i6CGYu3F86UZdHCGGB5yhJCIoBgHEMj4nKAJBwmxUwyIpYx8k5cYokJtTpYkQxC94G+fu5MCjbjXnplRe6wS8E2ptLFCTUxeylhXs00+N84a/cl7YDz12a757xZeIVGFc6J/6d6Z/9XpXhR62DQ9+OwpMYjuzitccnMr+uT2h64UHRJiOj5jPmXsGeX7PdtGk5ne9d0Kk38yTI3qvVdwczz/2p1L15+/iM7/xUh4xh5Pr6tpXoXT1Pw6O9+Dw1ajudZY31+rbW0XczWBJSyjztnZwBZ2sYc2K93gFne4Lz+UXyzLGn2jlkuFZhGfljX7Crbrr98=</latexit>

-
nX

i=1

rfi(✓)

<latexit sha1_base64="9GEdgCMP1IbabdFA7ABikSyfUs4=">AAADWHicjVLdTtRAGD27RYEVdIFLbxo3ErzZtAYjNyYEb7jEhAUSiptpmYUJ0590piRkwxv4NN7Ki+gT6Ft4ZigJSACn6e435zvnfPNNv7TSytgo+tnpBjPPns/OzfdeLCy+fNVfWt4zZVNncpSVuqwPUmGkVoUcWWW1PKhqKfJUy/307LPL75/L2qiy2LUXlTzKxUmhJioTltC4v5qYJk+0ypU146n6FF9+LcKkEKkW4WSs1hJ7Kq14N+4PomHkV3g/iNtggHbtlEudRSQ4RokMDXJIFLCMNQQMn0PEiFARO8KUWM1I+bzEJXrUNmRJMgTRM/6ecHfYogX3ztN4dcYqmm9NZYi31JTk1YxdtdDnG+/s0Ie8p97Tne2C/2nrlRO1OCX6lO6G+b8614vFBBu+B8WeKo+47rLWpfG34k4e3urK0qEi5uJj5mvGmVfe3HPoNcb37u5W+Pxvz3So22ctt8GfR7tL6frwF3H5pxgVzzjh6V01x+txmuJ/Z+d+sPd+GK8PP3xZH2xutXM1h9d4gzXOzkdsYhs7GLHSN3zHD1x1fwUIZoP5a2q302pWcGcFy38BfDKxMA==</latexit>

|C|X

j=1

wjrf�(j)(✓)

<latexit sha1_base64="6tON+jWJTS49ACYYkDR/juCRTOg=">AAADanicjVJNT9tAEH2JaZumpQ30VHGxmlYKl8iuqOCChODSI5WagISptTabsGH9Ie8ahJz8FX4NV3rvP2glfgSzi5GgEaVrOZl9896bnfVEuRRKe96vRtNZePb8Retl+9XrxTdvO0vLQ5WVRcwHcSazYj9iikuR8oEWWvL9vOAsiSTfi052TH7vlBdKZOl3fZ7zw4SNUzESMdMEhZ2NQJVJIEUitAqryaY/+1FNd6Yz9yycuEHKIsncUVgFY5YkrDdZnfUCfcw1Ww07Xa/v2eXOB34ddFGv3WypsYgAR8gQo0QCjhSaYgkGRc8BfHjICTtERVhBkbB5jhnapC2JxYnBCD2h3zHtDmo0pb3xVFYdUxVJb0FKF59IkxGvoNhUc22+tM4Gfcy7sp7mbOf0H9VeCaEax4Q+pbtj/q/O9KIxwobtQVBPuUVMd3HtUtpbMSd373WlySEnzMRHlC8ojq3y7p5dq1G2d3O3zOZ/W6ZBzT6uuSX+/LO7iFwf/yIm/xQjpzOO6PSmmuG1aZr8v2dnPhh+7vtr/S/f1rpb2/VctbCCD+jR7KxjC1+xiwFVusAlrvCzee0sO++dlVtqs1Fr3uHBcj7eAIsjuLM=</latexit>

�(3) = 2

<latexit sha1_base64="roXlsD8MKXb0EKufbCGr1Q60H3w=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahXkrSVvQiFL14rGA/sA1ls920SzebsLsRSui/8OJBEa/+G2/+GzdtDtr6YODx3gwz87yIM6Vt+9vKra1vbG7ltws7u3v7B8XDo7YKY0loi4Q8lF0PK8qZoC3NNKfdSFIceJx2vMlt6neeqFQsFA96GlE3wCPBfEawNtJjPxqzcu38uloYFEt2xZ4DrRInIyXI0BwUv/rDkMQBFZpwrFTPsSPtJlhqRjidFfqxohEmEzyiPUMFDqhyk/nFM3RmlCHyQ2lKaDRXf08kOFBqGnimM8B6rJa9VPzP68Xav3ITJqJYU0EWi/yYIx2i9H00ZJISzaeGYCKZuRWRMZaYaBNSGoKz/PIqaVcrTr1ycV8vNW6yOPJwAqdQBgcuoQF30IQWEBDwDK/wZinrxXq3PhatOSubOYY/sD5/AH+1j4A=</latexit>

�(4) = 2

<latexit sha1_base64="+RK6koww7eZGeM0JSLouBr9XBEI=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahXkpSInoRil48VrAf2Iay2W7apZtN2N0IJfRfePGgiFf/jTf/jZs2B219MPB4b4aZeX7MmdK2/W0V1tY3NreK26Wd3b39g/LhUVtFiSS0RSIeya6PFeVM0JZmmtNuLCkOfU47/uQ28ztPVCoWiQc9jakX4pFgASNYG+mxH49Z1T2/rpcG5Ypds+dAq8TJSQVyNAflr/4wIklIhSYcK9Vz7Fh7KZaaEU5npX6iaIzJBI9oz1CBQ6q8dH7xDJ0ZZYiCSJoSGs3V3xMpDpWahr7pDLEeq2UvE//zeokOrryUiTjRVJDFoiDhSEcoex8NmaRE86khmEhmbkVkjCUm2oSUheAsv7xK2vWa49Yu7t1K4yaPowgncApVcOASGnAHTWgBAQHP8ApvlrJerHfrY9FasPKZY/gD6/MHgT2PgQ==</latexit>

�(5) = 2

<latexit sha1_base64="RaZqWWAvy38j6SRTw9DksYRhWDQ=">AAAB8XicbVBNS8NAEJ3Ur1o/WvXoZbEI9VKS0qIXoejFYwX7gW0om+2mXbrZhN2NUEL/hRcPinj133jz37hpc9DWBwOP92aYmedFnClt299WbmNza3snv1vY2z84LJaOjjsqjCWhbRLyUPY8rChngrY105z2Iklx4HHa9aa3qd99olKxUDzoWUTdAI8F8xnB2kiPg2jCKo2L61phWCrbVXsBtE6cjJQhQ2tY+hqMQhIHVGjCsVJ9x460m2CpGeF0XhjEikaYTPGY9g0VOKDKTRYXz9G5UUbID6UpodFC/T2R4ECpWeCZzgDriVr1UvE/rx9r/8pNmIhiTQVZLvJjjnSI0vfRiElKNJ8Zgolk5lZEJlhiok1IaQjO6svrpFOrOvVq475ebt5kceThFM6gAg5cQhPuoAVtICDgGV7hzVLWi/VufSxbc1Y2cwJ/YH3+AILFj4I=</latexit>

�(6) = 2

<latexit sha1_base64="SomlUHGRf/4H42cTPew6oY5wAk0=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahXkpSWvUiFL14rGA/sA1ls920SzebsLsRSui/8OJBEa/+G2/+GzdtDtr6YODx3gwz87yIM6Vt+9vKra1vbG7ltws7u3v7B8XDo7YKY0loi4Q8lF0PK8qZoC3NNKfdSFIceJx2vMlt6neeqFQsFA96GlE3wCPBfEawNtJjPxqz8sX5dbUwKJbsij0HWiVORkqQoTkofvWHIYkDKjThWKmeY0faTbDUjHA6K/RjRSNMJnhEe4YKHFDlJvOLZ+jMKEPkh9KU0Giu/p5IcKDUNPBMZ4D1WC17qfif14u1f+UmTESxpoIsFvkxRzpE6ftoyCQlmk8NwUQycysiYywx0SakNARn+eVV0q5WnFqlfl8rNW6yOPJwAqdQBgcuoQF30IQWEBDwDK/wZinrxXq3PhatOSubOYY/sD5/AIRNj4M=</latexit>

�(1) = 2

<latexit sha1_base64="O4xEY8KxPy6bZh+XAQFEn6begiA=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQL2W3VPQiFL14rGBtobuU2TTbhibZJckKpfRvePGgiFf/jDf/jdl2D9r6YODx3gwz88KEM21c99sprK1vbG4Vt0s7u3v7B+XDo0cdp4rQNol5rLohaMqZpG3DDKfdRFEQIaedcHyb+Z0nqjSL5YOZJDQQMJQsYgSMlXx/CEJA1Tu/rpf65Ypbc+fAq8TLSQXlaPXLX/4gJqmg0hAOWvc8NzHBFJRhhNNZyU81TYCMYUh7lkoQVAfT+c0zfGaVAY5iZUsaPFd/T0xBaD0Roe0UYEZ62cvE/7xeaqKrYMpkkhoqyWJRlHJsYpwFgAdMUWL4xBIgitlbMRmBAmJsTFkI3vLLq+SxXvMatYv7RqV5k8dRRCfoFFWRhy5RE92hFmojghL0jF7Rm5M6L86787FoLTj5zDH6A+fzB/SskFQ=</latexit>

Coreset Selection

Fig. 4. Example of coreset selection.

similar to computing the K exemplars [68] of the gradients, if all the gradients of tuples can be

computed.

Upper bound minimization of GA error. We can see from Eq. 2 that to solve the equation, the

gradients have to be computed, which have a close relationship with the parameter θ . However, the
main bottleneck is that the entire parameter space ϑ is too expensive to explore. Hence, a typical

solution is to first compute the upper bound of GA error (Eq. 3), then generalize [7, 28, 58] the

upper bound computation to the entire parameter space (Eq. 4), and finally select the coreset to

minimize the bound. To be specific, using the triangle equation, for any particular θ , we have:

∥
n∑
i=1

∇fi (θ) −
|C |∑
j=1

w j∇fγ (j)(θ)∥ ≤
n∑
i=1

∥∇fi (θ) − ∇fγ (ϕθ (i))(θ)∥ (3)

Together with the aforementioned observation, given a coreset C , the upper bound is minimized

when ϕ assigns every tuple ti to the tuple in C with most gradient similarity, i .e ., ∥
n∑
i=1

∇fi (θ) −

|C |∑
j=1

w j∇fγ (j)(θ)∥ ≤
n∑
i=1

min

c j ∈C
∥∇fi (θ) − ∇fγ (j)(θ)∥.

For the entire space ϑ , it has been proved in recent works [7, 28, 58] that for convex ML problems

(corresponding to an optimization problem in which the objective function is a convex function),

the normed gradient difference between tuples can be efficiently bounded by:

∀i, j,max

θ ∈ϑ
∥∇fi (θ) − ∇fj (θ)∥ ≤ max

θ ∈ϑ
O(∥θ ∥) · ∥xi − xj ∥ (4)

where ∥xi − xj ∥ is the Euclidean distance between feature vectors of two tuples, namely feature
distance, and O(∥θ ∥) is a constant. Hence, we can conclude that GA error can be bounded inde-
pendent of the optimization problem in practice, i .e ., any particular θ . Finally, considering
Eq. 3 and Eq. 4 together, the coreset selection problem can be converted to:

C∗ = argmin

C⊆Dc

n∑
i=1

min

c j ∈C
si j , s.t. |C | ≤ K (5)

where si j = ∥xi − xγ (j)∥ for ease of representation. The above equation indicates that given a train

data Dc and a coreset C , we use S =
∑n

i=1 minc j ∈C si j to score the coreset. The lower the score, the

smaller upper bound of the GA error we can get, which indicates a better coreset. To summarize,

solving Eq. 5 is to minimize the upper bound of the GA error (i .e ., select the coreset with the lowest

score) by just considering the feature vectors of the training tuples without training in advance.

Note that Eq. 4 holds for tuples associated with the same label [7, 28]. Therefore, in practice, we

respectively select coresets for tuples with different labels and combine them. Suppose that we aim

to select a coreset with size K for a binary classification task (label 1: 60%, label 0: 40%), so we select

a coreset with size 60%K for tuples with label 1 and another one with 40%K for tuples with label 0.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:7

Our scope. In this paper, we focus on the convex problems (e .д., logistic regression, support

vector machine, etc.) because for such problems the gradient difference can be well bounded by

the difference between feature vectors. Note that, for other ML algorithms such as deep neural

networks, they can also be trained using selected coreset to achieve good training accuracy (see

Section 6 for our experimental findings).

3 CORESET OVER INCOMPLETE DATA
In this section, we will formally define the problem of coreset selection over incomplete data

(Section 3.1) and then describe our proposed framework to solve the problem (Section 3.2).

3.1 Problem Definition
As discussed above, we have to compute the coreset score S , so as to produce a good coreset. To this
end, the feature distances can be computed as a pre-processing step, based on which the coreset

score can be computed. However, when there exists incomplete data with missing values, even the

feature distances are hard to compute accurately, let alone selecting a proper coreset.

Incomplete data. Formally, suppose that D hasM attributes, denoted by {A1,A2, ...,AM }. Each

attribute Am ,m ∈ [1,M] represents a domain set including the Null, (i .e ., Null ∈ Am), in which

each tuple in D can take value on this attribute. |Am | denotes the domain size. Then, each tuple

ti ∈ A1 × A2×, ...,×Am . Let ti [m] denote the value of them−th attribute of ti , i .e ., ti [m] ∈ Am .

For a tuple ti ∈ D, if ∃ ti [m] = Null,m ∈ [1,M], ti is an incomplete tuple, denoted by I[ti] = 1,

otherwise I[ti] = 0. Let us better illustrate this using an example.

Example 2. As shown in Figure 5(a), there are 6 tuples in the table D with five attributes (an excerpt
from a large table). For example, A2 is the Gender attribute, i .e ., A2 = {M, F, Null}. Among these
tuples, t2, t3, t4, t6 have missing values, e .д., I[t2] = 1, I[t1] = 0. Given a coreset as shown on the right
side, if there are no missing values, we can assign each tuple ti ∈ D to its most similar tuple in C
(computeminc j ∈C si j), and then sum these feature distances up to compute the coreset score S . However,
given these missing values, the feature distances cannot be computed accurately (e .д., s12, s13, s22, etc.),
and thus the assignment of tuples in D cannot be determined precisely. Hence, the coreset score is not
precise, and thereby leads to a coreset that cannot well represent the full complete (clean) data.
As discussed above, imputation before coreset selection suffers from either large cost (human

imputation) or large number of possible repairs (automatic imputation), while imputation after
coreset selection cannot obtain a good coreset because of the inaccurate feature distance computation

(see Example 2).

Therefore, an essential problem is to select a good coreset that can represent the complete dataset

Dc , which relies on accurate coreset score computation given Dc that is the unknown ground truth.

Fortunately, the possible repairs of D can be modeled by possible worlds [9–11, 20], based on which

we can effectively select the coreset over incomplete data.

Possible worlds. Given the incomplete dataset D, ∀t ∈ D and I[t] = 1, ∀t[m] = Null,m ∈ [1,M],

we assign a value in Am \ {Null} to t[m] as an imputation (a.k.a. a possible repair). Thus, we

have an assignment for all the missing values in D, which corresponds to a possible worldW .

Since there exist a large number of possible assignments, we define the set of possible worlds as

IW = {Wk |k ∈ [1, |IW |]}.

Let us better illustrate this using an example.

Example 3. Given D, for tuples t2, t3, t4, t6 with missing values, we have a large number of possible
assignment as shown in Figure. 5(b), each of which corresponds to a possible world (we omit the Name
attribute because there is no missing value on this attribute). Suppose that there are 2 (4/100/10) types of

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

157:8 Chengliang Chai et al.

Depart. Working
YearsGenderName Age

Sales 2FNancy 24

Finance 10Amy 42

MLei 35

Market 8FLily

Sales 2MJames 38

6MTom 36

Dirty Dataset D
A Coreset C

Sales 2FNancy 24

MLei 35

Market 8FLily

t1
t2
t3
t4
t5
t6

c1

c2

c3

Depart. Working
YearsGenderName Age

Finance 10F 42

Sales 1M 35

Market 8F 45

Market 6M 36

Finance 10F 42

Market 10M 35

Market 8F 45

Market 6M 36

Finance 10M 42

Finance 5M 35

Market 8F 25

Sales 6M 36

1st possible world � 2nd possible world 32,000th possible world

…

X1

X2

X3

X4

X5

X6

X1

X2

X3

X4

X5

X6

X1

X2

X3

X4

X5

X6

X1

X3

X4

X1

X3

X4

X1

X3

X4

�(1) = 1

<latexit sha1_base64="8WRWWZ4lrRwPMB58BiqKU0aJlTQ=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXsquVPQiFL14rGA/YLuUbJptQ5PNkmSFsvRnePGgiFd/jTf/jWm7B219MPB4b4aZeWHCmTau++0U1tY3NreK26Wd3b39g/LhUVvLVBHaIpJL1Q2xppzFtGWY4bSbKIpFyGknHN/N/M4TVZrJ+NFMEhoIPIxZxAg2VvJ7QywErnrnN16/XHFr7hxolXg5qUCOZr/81RtIkgoaG8Kx1r7nJibIsDKMcDot9VJNE0zGeEh9S2MsqA6y+clTdGaVAYqkshUbNFd/T2RYaD0Roe0U2Iz0sjcT//P81ETXQcbiJDU0JotFUcqRkWj2PxowRYnhE0swUczeisgIK0yMTalkQ/CWX14l7YuaV69dPtQrjds8jiKcwClUwYMraMA9NKEFBCQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fu7iQPw==</latexit>

�(2) = 3

<latexit sha1_base64="VO1or33tHpYz7datUod8gbeaUqk=">AAAB9HicbVBNS8NAEN3Urxq/qh69LBahXkpSK3oRil48VrAf0IYy2W7apbtJ3N0USunv8OJBEa/+GG/+GzdtDtr6YODx3gwz8/yYM6Ud59vKra1vbG7lt+2d3b39g8LhUVNFiSS0QSIeybYPinIW0oZmmtN2LCkIn9OWP7pL/daYSsWi8FFPYuoJGIQsYAS0kbzuAISAUuX85sK2e4WiU3bmwKvEzUgRZaj3Cl/dfkQSQUNNOCjVcZ1Ye1OQmhFOZ3Y3UTQGMoIB7RgagqDKm86PnuEzo/RxEElTocZz9ffEFIRSE+GbTgF6qJa9VPzP6yQ6uPamLIwTTUOyWBQkHOsIpwngPpOUaD4xBIhk5lZMhiCBaJNTGoK7/PIqaVbKbrV8+VAt1m6zOPLoBJ2iEnLRFaqhe1RHDUTQE3pGr+jNGlsv1rv1sWjNWdnMMfoD6/MHL0aQag==</latexit>

�(3) = 4

<latexit sha1_base64="SqIGRP0yAVBjWQkkYGfqrhEuuog=">AAAB9HicbVBNS8NAEJ34WeNX1aOXxSLUS0m0oheh6MVjBfsBbSib7aZdupvE3U2hhP4OLx4U8eqP8ea/cdPmoK0PBh7vzTAzz485U9pxvq2V1bX1jc3Clr29s7u3Xzw4bKookYQ2SMQj2faxopyFtKGZ5rQdS4qFz2nLH91lfmtMpWJR+KgnMfUEHoQsYARrI3ndARYCly/Obqq23SuWnIozA1ombk5KkKPeK351+xFJBA014VipjuvE2kux1IxwOrW7iaIxJiM8oB1DQyyo8tLZ0VN0apQ+CiJpKtRopv6eSLFQaiJ80ymwHqpFLxP/8zqJDq69lIVxomlI5ouChCMdoSwB1GeSEs0nhmAimbkVkSGWmGiTUxaCu/jyMmmeV9xq5fKhWqrd5nEU4BhOoAwuXEEN7qEODSDwBM/wCm/W2Hqx3q2PeeuKlc8cwR9Ynz8yVZBs</latexit>

t2
t3
t4

t6

t1
t3
t4

(a) An example of dataset with missing values and a coreset

(b) An example of the possible worlds

SalesF 24 2t1

Sales 2M 38t5

SalesF 24 2

M Sales 38 2

SalesF 24 2

M Sales 38 2

W1

C1

W2

C2

p1S1 p2S2

Fig. 5. Example of coreset selection with missing values.

values of the attribute Gender (Department/Age/Working years), there exist 32,000 possible worlds
in total.

Note that for numerical attributes, we will bin them into different buckets, such that we can treat

them as categorical values and avoid the unlimited number of possible worlds.

Even with possible worlds, the score computation of coreset remains challenging. Each possible

world of D is a complete dataset, and thus given a coreset, the score can be directly computed

considering the feature distances, as discussed in Section 2.2. However, the crucial issue is that

each possible world could be the ground truth, i .e ., Dc , but each one leads to a different score.

Example 4. As shown in Figure. 5(b), the two possible worldsW1 andW2 are only different in t3,
leading to a different feature vector x3, which makes the score computation a difference. To be specific,
given the same coresetC with tuples t1(c1), t3(c2) and t4(c3), because of a different x3, the closest feature
distance of x5 inW2 becomes x1, rather than x3 inW1. And the closest feature distance of x6 inW2

becomes x3, rather than x4 inW1. Therefore, the coreset scores, i .e ., the sum of these closest feature
distances of tuples are different among possible worlds.

Example 4 shows that different possible worlds make the mapping ϕ different, which leads to

different scores. Hence, to get a good coreset without the ground truth, an intuitive solution is

to compute the expected coreset score considering all possible worlds. By doing so, although we

cannot get the complete data (Dc) in advance, we can focus on how to select an informative coreset

that can represent the possible worlds of D.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:9

Depart. Working
YearsGenderName Age

Sales 2FNancy 24

Finance 10Amy 42

MLei 35

Market 8FLily

Sales 2MJames 38

6MTom 36

Dirty Dataset D

t1
t2
t3
t4
t5
t6

Sales 2MJames 38

Finance 10Amy 42

Greedy Coreset Construction
c1

c2

Sample h=3 tuples

{<latexit sha1_base64="e1sGbj8p8DukT20Ng/WxdMRzTfA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy223bpZhN2J0IJ/QlePCji1V/kzX/jps1BWx8MPN6bYWZeEEth0HW/ncLa+sbmVnG7tLO7t39QPjxqmSjRjDdZJCPdCajhUijeRIGSd2LNaRhI3g4mt5nffuLaiEg94jTmfkhHSgwFo2ilh15a6pcrbtWdg6wSLycVyNHol796g4glIVfIJDWm67kx+inVKJjks1IvMTymbEJHvGupoiE3fjo/dUbOrDIgw0jbUkjm6u+JlIbGTMPAdoYUx2bZy8T/vG6Cw2s/FSpOkCu2WDRMJMGIZH+TgdCcoZxaQpkW9lbCxlRThjadLARv+eVV0rqoerXq5X2tUr/J4yjCCZzCOXhwBXW4gwY0gcEInuEV3hzpvDjvzseiteDkM8fwB87nD9MBjYE=</latexit>

t3
t4
t6

6MTom 36

1st
 l

oo
p

2nd
 l

oo
p

3rd
 l

oo
p

Greedily construct
one-by-one

Pick WKH�RQH�ZLWK�
WKH�ODUJHVW�XWLOLW\

t6 c3

Compute the
utility

Fig. 6. The GoodCore framework.

Next, we formally define the studied problem.

Expected optimal coreset selection over incomplete data. Given D, we have a number of

possible worlds IW = {Wk }. Then given a subset (coreset) C ⊂ D, for differentWk , we have the

corresponding Ck with the same tuples as C but probably different imputations. For Ck , we can

compute a score Sk =
∑n

i=1 minc j ∈Ck si j , where si j = ∥xi − xγ (j)∥ and both feature vectors are from

{Wk }. Then, we have the expectation E[C] =
∑ |IW |

k=1 pkSk , where pk denotes the probability of the

appearance of {Wk }. Finally, our problem becomes how to compute the coreset C with the lowest

expectation of GA error upper-bound. Formally, we have

C∗ = argmin

C⊆D
E[C], s.t. |C | ≤ K (6)

For example, given D, the corresponding possible worlds and a coreset C in Figure 5, we have

different Ck with the same tuples (containing t1, t3, t4) but probably different imputations. For each

Ck , we will compute Sk , and finally compute E[C]. Solving Eq. 6 can result in an informative coreset

with incomplete tuples being selected. After these tuples imputed by a human, i .e ., Case (5), or
state-of-the-art automatic method, i .e ., Case (6), we can derive a good coreset.

3.2 Goodcore Framework
Next, we will introduce our proposed GoodCore framework to solve Eq. 6, which is non-trivial

because it is NP-hard. But fortunately, we prove that it has the sub-modular property (see Sec-

tion 4). Hence, GoodCore uses a greedy framework with three loops to solve the problem with an

approximate ratio.

At a high level, the greedy strategy adds one tuple with the largest “utility” to the coreset

iteratively, which can be considered as the first loop. In each iteration, we have to iterate tuples in

D to select the one with the largest utility, which is the second loop. Naturally, we have to compute

the utility of each tuple, where all tuples in D have to be considered, leading to the third loop.

Next, we will further illustrate the framework using Figure 6 and Algorithm 1.

The first loop (lines 2-9) of the greedy algorithm is to add the tuple t∗ with the maximum utility
(i .e ., E[t |C] = E[C] − E[C ∪ {t}]) into the coreset iteratively for K times. To be specific, the “utility”

of a tuple t denotes the reduction of expectation of GA error after adding t into the coreset C .
Suppose that K = 3. Figure 6 (the 1

st
loop part) shows the situation that there already have been

2 tuples in C , and we are going to add the third tuple into the coreset.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

157:10 Chengliang Chai et al.

Algorithm 1: GoodCore Framework

Input: Incomplete train data D, coreset size K , sample size h.
Output: A coreset C ⊆ D, weightW = {w j },|C | = |W| = K .

1 C = ∅;

2 while |C | < K do
3 /*1st loop*/

4 Sample h tuples as Tsample ⊆ D \C

5 for each tuple t ∈ Tsample do
6 /*2nd loop*/

7 E[t |C] = ComputeUtility(t ,C,D); /*3rd loop*/

8 t∗ = argmaxt ∈Tsample
E[t |C] ;

9 C = C ∪ {t∗};

10 for t ∈ C do
11 if I[t] = 1 then
12 Impute t by a human or automatic method.

13 for j = 1 to |C | do
14 for i = 1 to n do
15 if c j = argminc j′ ∈C max

θ ∈ϑ
∥∇fi (θ) − ∇fγ (j′)(θ)∥ then

16 w j += 1;

17 return C,W;

The second loop (lines 5-7) computes the utilities of tuples that are not in coreset C , based on

which the best one is picked for the first loop. An ideal solution is to consider all tuples in D \C ,
which is prohibitively expensive, so in practice we use an efficient method to accelerate this loop

by uniformly sampling h tuples as Tsample (line 4) and then selecting the best one from Tsample

(line 8). The difference is that theoretically, considering all tuples has an approximate ratio 1-
1

e
(because of the sub-modular property), while the sampling method holds a (1-

1

e − ϵ) ratio [57],

where ϵ is related to the sampling ratio.

As shown in Figure 6, suppose that h = 3, and we sample {t3, t4, t6} from {t1, t3, t4, t6}. Then the

second loop iterates the three tuples and computes the utility for each one (the third loop).

The third loop (line 7)will loop through all tuples inD, so as to compute the utility of tuple t used
in the second loop. To be specific, the core part of the utility computation (i .e ., ComputeUtility)

is to compute E[C] =
∑ |IW |

k=1 pkSk =
∑ |IW |

k=1 pk (
∑n

i=1 minc j ∈Ck si j), from which we can see that it is

inevitable to iterate the n tuples in D. However, the most challenging part is that we also have

to enumerate a large number of possible worlds. We will illustrate how to solve this in details in

Section 4.

The imputation step (line 12). After GoodCore selects the coreset C using the above 3 loops, we

can leverage a human or automatic method to impute the tuples that are incomplete in C , which
correspond to Case (5) and Case (6) in Section 1 respectively.

Weights computation (lines 13-16). It computes the weight of each tuple inC , which will be used
to approximate the full gradient during training. For training, tuples in the coreset are randomly

shuffled. Afterwards, suppose that in each step of the gradient decent, when we use c j ∈ C to

update the gradient, we compute the gradient (∇fj) of c j first, and then usew j∇fj to update the

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:11

model parameters.w j is the number of tuples in D assigned to c j . The above steps repeat until the
model converges.

Optimization. Unfortunately, the 3-loop computation of the strategy is rather expensive due to

the large number of possible worlds (Section 4). To address this, we can integrate either human-

in-the-loop or the automatic method into GoodCore framework (Section 5). It iteratively imputes

one incomplete tuple or a mini-batch of incomplete tuples. Once the tuple(s) is (are) computed

and added to the coreset within the first loop, the number of possible worlds can be significantly

reduced, and so does the computational cost. In addition, how to select an appropriate coreset size

K is an important problem, which will be discussed in Section 6.3.

4 GOODCORE ALGORITHM
In this section, we will illustrate GoodCore algorithm in details for solving Eq. 6, which is proven to

be prohibitively expensive (Section 4.1). Then we focus on how to compute the expectation using

possible worlds (Section 4.2) in the algorithm.

4.1 Problem Complexity

Let us first discuss the time complexity of finding the optimum of Eq. 6.

Theorem 1. The problem of expected optimal coreset selection over incomplete data is NP-hard.
Proof. Let us consider a special case that there is no missing value in D. Our problem becomes

the typical coreset selection problem over complete data, which has been proven to be NP-hard

by reduction from the Minimum Vertex Cover problem [21, 58, 59]. Hence, our problem is also

NP-hard. □

Theorem 2. The problem of expected optimal coreset selection over incomplete data has the sub-
modular property.

Proof. First, we regard E[C] =
∑ |IW |

k=1 pkSk as a utility function, where Sk =
∑n

i=1 minc j ∈Ck si j .
In fact, Sk can be regarded as a function of the coreset score computation over complete data, which

has already proven to have the sub-modular property [33, 58, 59]. Therefore, consider the property

that a non-negative linear combination of sub-modular functions is also sub-modular [42]. To be

specific, given any sub-modular function д1,д2, . . . ,дk and non-negative numbers α1,α2, . . . ,αk .

Then the function G defined by G =
∑k

i=1 αiдi is sub-modular. Hence, we can conclude that our

studied problem is a sub-modular problem because E[C] =
∑ |IW |

k=1 pkSk , where pk > 0. □

The greedy algorithm. Given the sub-modular property, naturally, we can design a greedy algo-

rithmwith an approximate ratio. As shown inAlgorithm 1, we greedily add one tuple to the coreset at

each iteration. The added tuple should have the largest utility computed by E[t |C] = E[C]−E[C∪{t}].
Hence, the key component is that given the original train data (D) and a coreset (C or C ∪ {t}),
how to compute the expectation of GA error (E[C] or E[C ∪ {t}]) of the coreset. However, it is
non-trivial because of the large number of possible worlds. We will first introduce how to compute

the probability pk , and describe the expectation computation in Section 4.2. After K tuples are

added, we can impute missing tuples in the coreset generated by GoodCore.

4.2 Expectation Computation

Possible world probability. To compute the expectation, it is inevitable to derive the probability

of each possible world, which can be taken as a pre-processing step in our framework. To be specific,

since tuples with missing values are always imputed independently [56], given a possible world

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

157:12 Chengliang Chai et al.

Wk , the probability pk can be computed by pk =
∏

t ∈Wk ,I[t]=1
ptk , where p

t
k denotes the probability

of the appearance of tuple t with I[t] = 1. Besides, apparently ptk = 1 when I[t] = 0, so pk = 1 if

there are only complete tuples. Therefore, our focus is on how to get the value of ptk , which can

be solved by many approaches, like statistic methods and learning-based methods (see [56] for a

survey). In this paper, we use the learning-based method [12] with a Python library [1] to generate

the probability, which can be easily replaced by other libraries or domain-specific methods. During

training, learning-based methods take D as input and learn a modelM to describe the joint data

distribution. For inference, we have P(Ai |x,vmask) =M(x,vmask ,ω
∗), where the model takes as

input the feature vector x of t , the mask vector vmask (indicating which attributes are missing) and

the model parameter ω∗
, outputs the probability distribution of a missing attribute Ai .

Suppose that t just has one missing attribute Ai , and then vmask is a one-hot vector with

vmask [i] = 0. Hence, we can directly obtain ptk from the distribution P(Ai |x,vmask). For t with

multiple missing attributes, we can also compute ptk using the chain rule. If t has two missing

values of Ai and Aj , to compute ptk , we have to compute P(Ai ,Aj |x,vmask), abbreviated as

P(Ai ,Aj) = P(Ai)P(Aj |Ai). P(Ai) can be obtained by masking the i-th and j-th attribute in

vmask . Then, we only mask the j-th attribute and impute different values ofAi to obtain P(Aj |Ai).

Example 5. In Figure 5(a), suppose that for the first possible world, we have to compute p1 =
p2
1
× p3

1
× p4

1
× p6

1
. For instance, to compute p3

1
, given the trained deep learning model, we feed

{Lei, M, Mask, 35, Mask} and a one-hot vector {1, 1, 0, 1, 0} into the model and compute the probability
distribution of this tuple, from which we can get p3

1
, i .e ., the probability of {Lei, M, Sales, 35, 1}.

Compared with statistical approaches, deep learning-based methods use more powerful models

with good learning capacity and consider the correlation between attributes. For practitioners, they

can use any ad-hoc method to compute the probability.

Brute-force expectation computation. Recap that E[C] =
∑ |IW |

k=1 pk (
∑n

i=1 minc j ∈Ck si j). Intu-
itively, the brute-force method is to enumerate each possible world, compute the probability and

finally get the expectation. However, there are a huge number of possible worlds, which makes

the computation prohibitively expensive. Specifically, we assume the attribute number M and

|Am |,m ∈ [1,M] are constants, so the number of possible worlds of each tuple is a constant,

denoted by L. Suppose that the number of tuples with missing values is O(n), so the number of

possible worlds (|IW |) is O(Ln). Given a coreset C , the time complexity to compute E[C] is O(nLn),
which is rather expensive.

Tuple-based expectation computation. To further elaborate, we can easily expand E[C] as
follows:

E[C] =p1(min

c j ∈C1

s1j
::::::::

+ min

c j ∈C1

s2j + · · · + min

c j ∈C1

snj)

+ p2(min

c j ∈C2

s1j
::::::::

+ min

c j ∈C2

s2j + · · · + min

c j ∈C2

snj) + · · ·

+ p |IW |(min

c j ∈C |IW |

s1j

:::::::::::::

+ min

c j ∈C |IW |

s2j + · · · + min

c j ∈C |IW |

snj).

We can see from the above equation that these underlined terms are only related to t1 ∈ D as well

as {C1,C2, · · · ,C |IW |}, i .e ., the coresets corresponding to the |IW | possible worlds. However, as

the coreset C is much smaller than the full data D, the number of possible worlds of C will be

also much smaller than |IW |, and thus there will be many duplicates among {C1,C2, · · · ,C |IW |}.

Therefore, many of these underlined terms have identical variable parts, i .e ., minc j ∈Ck s1j , when

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:13

Sales 2MJames 38c1

Market 6MTom 36c2

c3 Finance 1MLei 35

Sales 2MJames 38c1

Sales 6MTom 36c2

c3 9MLei 35Sales 2MJames 38c1

Sales 6MTom 36c2

c3 Market 10MLei 35

···
Finance 10MAmy 42

Sales 2FNancy 24

Finance 10FAmy 42

Possible worlds of C

MLei 35

Market 8FLily

Sales 2MJames 38

6MTom 36

Incomplete Dataset D

t2

possible worlds
of C∪{t2}

Fig. 7. Tuple-based expectation computation.

they are associated with the same Ck . These terms are like terms. Combining these like terms (i .e .,∑ |IW |

k=1 pk minc j ∈Ck s1j), we can get the expectation of minc j ∈C s1j , denoted by E[minc j ∈C s1j].
In short, we can convert the expectation computation over the possible worlds of the entire

training set D to the sum of expectation of each tuple in D, as follows:

E[C] =

|IW |∑
k=1

pk (
n∑
i=1

min

c j ∈Ck
si j) =

n∑
i=1

E[min

c j ∈C
si j] (7)

Example 6. Figure 7 shows how to compute E[minc j ∈C s2j]. Instead of enumerating |IW | possible
worlds by the brute-force method, we can enumerate a much smaller number of possible worlds of
C ∪ t2, compute the corresponding probabilities and finally get the tuple expectation. Specifically, The
left part of Figure 7 shows the possible worlds of the tuple, the right part shows the possible worlds of
the coreset, and their combination is the possible worlds of C ∪ t2. Then, following Eq. 7, we can iterate
the tuples in D, compute their expectations and sum them up to derive E[C].

Time complexity. Since the coreset size is K , and the number of tuples with missing values in the

coreset isO(K), the time complexity of computing E[C] using tuple-based method isO(nLK), where
K is much smaller than n, compared with the brute-force method. However, note that computing

E[C] is just the third loop in the entire framework. Besides, the first two loops incrementally add

K tuples into the coreset, and sample h tuples for tuple selection respectively. Hence, the overall

time complexity of coreset selection over incomplete data is O(KhnLK), which is still expensive

when K is not small enough. In the next section, we involve the imputation-in-the-loop strategies

to achieve further improvement.

5 OPTIMIZED GOODCOREWITH IMPUTATION-IN-THE-LOOP
As discussed above, it is rather expensive to directly compute all the K tuples in the coreset. Hence,

in this section, we propose to involve the imputation-in-the-loop mechanism that asks the human,

i .e ., Case (7), or automatic method, i .e ., Case (8) to impute these missing values iteratively while

they are generated by Algorithm 1.

The advantages of this optimization are two-fold. First, with more and more missing values being

imputed, the number of possible worlds is greatly reduced, which reduces the machine cost a lot.

Second, for human-in-the-loop imputation, it allows us to gradually impute the tuples accurately,

and thus the coreset score computation can be more and more accurate, which produces a better

coreset.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

157:14 Chengliang Chai et al.

Algorithm 2: ComputeUtility (3rd-loop to compute E[t |C])

Input: Incomplete train data D, current coreset C , a sampled tuple t .
Output: The expectation E[t |C].

1 Ĉ = C ∪ {t};

2 E[Ĉ] = 0;

3 for each tuple ti ∈ D do
4 if I[t] = 0 and I[ti] = 0 then
5 E[Ĉ]+= minc j ∈Ĉ si j ;

6 else
7 Get the possible worlds of Ĉ ∪ {ti };

8 Compute E[minc j ∈Ĉ si j] using these possible worlds and their probabilities;

9 E[Ĉ]+= E[minc j ∈Ĉ si j];

10 E[t |C] = E[C] − E[Ĉ];

11 return E[t |C];

5.1 One Tuple Each Iteration

In fact, we can just slightly modify Algorithm 1 to achieve the imputation-in-the-loop strategy.

To be specific, in the first loop, we will iteratively impute the tuple once an incomplete tuple t∗ is
computed by GoodCore, rather than conducting the imputation after K tuples are computed, as

discussed in Section 4. To this end, we move the imputation step (lines 11-12 in Algorithm 1) inside

the first loop of Algorthm 1, i .e ., imputing each selected t∗ by a human or automatic method in

each iteration after line 9.

Afterwards, we will add the next tuple into the coreset, so another loop starts and h tuples are

sampled. In the following, we will expand the third loop, i .e ., the function ComputeUtility (line 7)
of Algorithm 1 under this one tuple per iteration scenario.

As shown in Algorithm 2, at the beginning, we temporarily add the sampled tuple t to the

current coreset, so as to compute the benefit of t , i .e ., E[t |C]. To this end, we have to first compute

the expectation of GA error bound of Ĉ (i .e ., computing E[Ĉ] in the for-loop lines 3-9). And

the expectation w.r.t. C (i .e ., E[C]) has been computed in the last loop. Then we can compute

E[t |C] = E[C] − E[Ĉ] (line 10).
Specifically, to compute E[Ĉ], we will use the tuple-based expectation computation method

proposed in Section 4.2. For each tuple ti ∈ D, if ti and t are both complete, we can directly compute

minc j ∈Ĉ si j because there is no incomplete data in Ĉ (lines 4-5). Otherwise, we will enumerate the

possible worlds of Ĉ ∪ {ti }, compute their probabilities and compute E[minc j ∈Ĉ si j] (lines 7-8). Note

that since there are at most two tuples (i .e ., ti and t) have missing values, the number of possible

worlds is small because other missing values in Ĉ have been imputed by humans in previous

iterations.

Time complexity analysis. As discussed above, using this human-in-the-loop strategy, the num-

ber of possible worlds to be considered is greatly reduced. For Algorithm 2, the time complexity is

O(nL2) because there are at most two incomplete tuples in Ĉ . For the entire three loops framework,

the time complexity isO(KhnL2), which is much lower than the solution without imputation in the

loop.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:15

Algorithm 3: Batch algorithm of GoodCore

Input: D, K , h, batch size b.
Output: A coreset C , weightW.

1 C = ∅, cnt = 0;

2 while |C | < K do
3 Sample h tuples as Tsample ⊆ D \C

4 for each tuple t ∈ Tsample do
5 E[t |C] = ComputeUtility(t ,C,D);

6 t∗ = argmaxt ∈Tsample
E[t |C] ;

7 C = C ∪ {t∗};

8 if I[t∗] = 1 then
9 cnt + +;

10 if cnt = b then
11 Ask the human to impute the incomplete tuples;

12 cnt = 0;

13 Compute the weightW.

14 return C,W;

However, if we utilize the human for imputation, the above method will incorporate many human

iterations. In the following, we propose to ask human to impute a small batch of missing tuples in

each iteration, so as to reduce the number of human iterations.

5.2 One Batch Each Iteration with Human-in-the-loop
In Section 5.1, one tuple per iteration by humans requires many human iterations. However, if we

just incorporate a single human iteration like Section 4.2, it is infeasible to compute the tuples to

be imputed due to the large number of possible worlds. Therefore, in this subsection, we propose a

trade-off solution that asks the human to impute a small batch of tuples per human iteration.

To be specific, as shown in Algorithm 3, compared with the one tuple per human iteration

algorithm (i .e ., the modified Algorithm 1 at the beginning of Section 5.1), we additionally take the

batch size b as input (when b = 1, Algorithm 3 is in fact the modified Algorithm 1). Algorithm 3 also

incorporates 3 loops, but the main difference is that we do not instantly ask the human to impute

the most beneficial tuple t∗ amongTsample . Instead, we just add t
∗
into the coresetC (line 7). When

there have been b incomplete tuples, we ask the human to impute these tuples together (line 10-12).

Finally we compute the weight (line 13), same as Algorithm 1. Although this approach reduces

the number of human iterations, it takes a longer time to compute E[t |C] (line 5) than Algorithm 1

because there are more incomplete tuples, which indicates more possible worlds. Specifically, the

time complexity of computing E[t |C] is O(nLb), which is also expensive. Hence, we propose a

heuristic method to accelerate this process as follows.

Reducing the number of possible worlds.A straightforward method of improving the efficiency

is to reduce the number of possible worlds. To this end, intuitively, we should focus more on the

possible world with a high probability, so these possible worlds with low probabilities can be pruned

without sacrificing the accuracy of expectation computation much. Note that for each possible

world, the probability is computed by the multiplication of the probabilities of incomplete tuples

in the world because the tuples can be considered independent [56]. Therefore, we can remove

the possible worlds of each tuple with low probabilities (i .e ., reducing L), and thus the number

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

157:16 Chengliang Chai et al.

of possible worlds of the entire coreset is greatly reduced. For example, we can keep top-l (e .д.,
l = 3) possible worlds (i .e ., 3 different possible imputations of t with high probabilities) of a tuple t .
Then for the batch of b incomplete tuples, the number of possible worlds is lb and the complexity

of computing E[t |C] is O(nlb), where both l and b are small enough. Overall, the time complexity

is O(Khnlb). Besides, we can also apply this heuristic method to make the algorithm in Section 4

practical, which is evaluated in Section 6.4.

5.3 Convergence Rate Analysis
Convergence rate is often used to reflect the speed of finding the optimal parameters for the

machine learning algorithm. With a higher convergence rate, we can take fewer epochs to make

the model converge. To compute the convergence rate, we have to compute the distance between

the parameter θ and the optimal parameter θ ∗ in the t-th and the (t + 1)-th epoch. Since f is a

strongly convex function, ∀θ ,θ ′ we have

f (θ) − f (θ ′) ≥ ∇f (θ ′)(θ − θ ′) +
η

2

∥θ − θ ′∥2 (8)

where η is a constant. We denote the stepsize as ζt =
ζ0
kτ for the t-th epoch, where τ is a constant.

After using gradient descent in each step, we have ∥θ t+1−θ ∗∥2 = ∥θ t −ζk
∑ |C |

j=1w j∇fγ (j)(θ
t
j−1)−θ

∗∥2.

Then, following Eq. 8, we have

∥θ t+1 − θ∗∥2 ≤ ∥θ t − θ∗∥2 − 2ζt

|C |∑
j=1

(fj (θ
t) − fj (θ

∗))

+2ζt

|C |∑
j=1

(fj (θ
t
j−1) − fj (θ

t)) + ζ 2t

|C |∑
j=1

∥w j∇fj (θ
t
j−1)∥

2

(9)

Recap that we select a coreset that minimizes E[C] through converting gradient difference

to feature distance (si j) computation. Obviously, given a dataset, si j can be bounded (suppose

that si j ≤ s0). Then we have E[minc j ∈C si j] =
∑ |IW |

k=1 pk (minc j ∈Ck si j) ≤
∑ |IW |

k=1 pk ∗ s0 = s0, and
thus E[C] =

∑n
i=1 E[minc j ∈C si j] ≤ n ∗ s0 = κ1. Besides, we also have maxθ ∈ϑ ∥

∑n
i=1 ∇fi (θ) −∑ |C |

j=1w j∇fγ (j)(θ)∥ ≤
n∑
i=1

min

c j ∈C
∥∇fi (θ) − ∇fγ (j)(θ)∥ ≤

n∑
i=1

min

c j ∈C
si j ≤ κ1. Following the definition of

convex function, we have fj (θ
t) − fj (θ

∗) ≤ w j∇fj (θ
∗)(θ t − θ ∗) +

η
2
∥θ t − θ ∗∥2. Based on the above

things, we can apply Cauchy-Schwarz inequlity [72] and derive

− 2ζt

|C |∑
j=1

(fj (θ
t) − fj (θ

∗))

≤ − ηζt ∥θ
t − θ∗∥2 + 2ζt ∥

|C |∑
j=1

w j∇fj (θ
∗)∥∥(θ t − θ∗)∥

≤ − ηζ t ∥θ t − θ∗∥2 +
2ζ t |C |κ1κ2

η

(10)

where κ2 can be regarded as the upper bound of ∥θt − θ ∗∥. Since f is convex, thus, for item

fj (θ
t
j−1) − fj (θ

t), we have fj (θ
t
j−1) − fj (θ

t) ≤ ∥w j∇fj (θ
t)∥ζt

∑j−1
i=1 ∥wi∇fi (θ

t
i−1)∥. In addition, we

can assume thatmax j ∈{1, · · · , |C | }∥∇fj (θ)∥ ≤ κ3. Then, we have

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:17

2ζt

|C |∑
j=1

(fj (θ
t
j−1) − fj (θ

t)) + ζ 2t

|C |∑
j=1

∥w j∇fj (θ
t
j−1)∥

2

≤2ζt

|C |∑
j=1

∥w j∇fj (θ
t)∥ζt

j−1∑
i=1

∥wi∇fi (θ
t
i−1)∥ + ζ

2

t

|C |∑
j=1

∥w j∇fj (θ
t
j−1)∥

2

≤2ζ 2t (|C |
2 − |C |)w2

maxκ
2

3
+ ζ 2t |C |w

2

maxκ
2

3

(11)

Thus, from Eq. 9 to Eq. 11, we can get

∥θ t+1 − θ∗∥ ≤ (1 − ηζt)∥θ
t − θ∗∥2 +

2ζt |C |κ1κ2
η

+ ζ 2t |C |
2w2

maxκ
2

3
(12)

Finally, following Lemma 4 in [19], the convergence rate of Algorithm 1 is at the same rate of

O(1√
k
) as the convergence rate on the entire dataset [62]. Therefore, theoretically, the selected

coreset can converge with the same number of epochs as training on the full data. In this way,

since coreset has a much smaller size than the full data, the efficiency can be much improved.

6 EXPERIMENT

In this section, we sufficiently compare our proposed methods with multiple baselines on real

datasets to demonstrate our effectiveness and efficiency.

6.1 Experimental Settings

Dataset.We evaluate on 6 real-world datasets that are often used in the field of data imputation [31,

38, 41, 45], as shown in Table 1, whereM denotes the number of attributes.

(1) Nursery [2] is a multi-classification task, which predicts “the level of recom-
mendation for whether a child goes to school”. There are five different levels, i .e .,
{not_recom, priority, recommend, spec_prior, very_recom}. (2) HR [17] is a binary classi-

fication task of “predicting whether an employee would change the job”. (3) Adult [3] is a binary

classification task that predicts “if the annual revenue of a people is over 50000 dollars”. (4) Credit [4]
is a binary classification task that predicts “whether the loan will be deferred based on a person’s
economic situation”. (5) BikeShare [5] is a regression task that predicts “the number of bike sharing
in a given time”. (6) Air [6] is a regression task that predicts “the air quality at a certain time”.
For datasets (1)-(3), we follow existing works [32, 75, 78] to manually inject missing values

until the rate of missing tuples is 30%, and we will vary the percentage of incomplete tuples in

Section 6.6. Datasets (4)-(6) already contain missing values. For all datasets, we randomly split them

for 80%/10%/10% as train/validation/test sets.

Evaluation metrics.We mainly evaluate the effectiveness and efficiency of GoodCore and base-

lines. For effectiveness, we use the prediction accuracy for the classification task and use the mean

square error (MSE =
∑N
i=1(yi−ŷi)

N , where N denotes the size of test set) for the regression task.

Table 1. Statistics of datasets

Dataset |D | M # Incomp. Tuples Task
Nursery 10960 9 3218 Multi-Class.

HR 18287 12 5475 Binary Class.

Adult 32842 14 10752 Binary Class.

Credit 131,000 11 76813 Binary Class.

BikeShare 13300 15 4821 Regression

Air 437,200 18 128,372 Regression

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

157:18 Chengliang Chai et al.

For efficiency, we focus on the machine cost (i .e ., the runtime of machine) as well as the human

cost (the number of tuples imputed by human for human-involved methods). For datasets (1)-(3),

we have the ground truth of missing tuples, so we use them to simulate the human imputation.

For datasets (4)-(6), we leverage the expert to impute missing values in the coreset by looking at

the top-5 values recommended by the automatic method as a reference. Note that we only involve

humans when it is affordable. For baselines that require humans to impute a lot of missing tuples

(i .e ., Complete and C(H(D)) as below), we will not apply them on datasets (4)-(6).

Baselines. We compare GoodCore with a variety of baselines.

(1) Origin refers to just training on D.
(2) ActiveClean [38] is an iterative data cleaning framework, which estimates the impact of tuples

and prioritizes cleaning the tuples that much affect the model performance. In each iteration, it can

ask the human to clean a sample subset of tuples. We set the sample size to 50, same as the paper.

(3) BoostClean [36] is an automatic data cleaning method that iteratively selects a cleaning method

from several pre-defined algorithms, applies to the train dataset and updates the model. We use

MICE [69], MISSForest [71], GAIN [78] as pre-defined algorithms.

(4) Best-Auto uses MICE [69], MISSForest [71], GAIN [78] to respectively impute the train set

and selects the one that achieves the highest accuracy on the validation set.

(5) Complete is an ideal case that trains on the ground truth, i .e ., Dc . Note that only datasets (1)-(3)

have the ground truth to evaluate this baseline. Datasets (4)-(6) do not have the ground truth and it

is too expensive to ask the human to impute so many missing values.

(6) MixCore is a baseline that selects a coreset from all complete tuples, and then we randomly

select some incomplete tuples to impute. We set the number of incomplete tuples to be imputed

equal to that of other baselines for fair comparison. Finally we train with the tuples in the coreset

plus the imputed ones.

(7) C(H(D)) first involves human to impute the dataset D and then selects a coreset. Similar to

Complete, only datasets (1)-(3) can be evaluated on it because they have the ground truth. The

coreset selection solution is the algorithm in [58], which is a greedy algorithm by modifying

Algorithm 1 without considering the possible worlds.

(8) C(A(D)) first uses automatic data imputation methods to impute the dataset D, and then selects

a coreset using the same method of baseline (7).

(9) H(C(D)) directly selects a coreset based on D and then asks human to impute the incomplete

tuples of the coreset.

(10) A(C(D)) also directly selects a coreset from D, it then uses MICE [69] to impute the incomplete

tuples in the coreset.

Our solutions. We compare GoodCore and its variants.

(11)G(D,⟲H) uses GoodCore to select the coreset and iteratively asks human to impute incomplete

tuples (one tuple per human iteration) during the coreset selection process.

(12) G(D,⟲A) is similar to G(D,⟲H), but the automatic MICE method is used.

Besides, since the coreset of H(G(D)) (or A(G(D))) is too expensive to compute due to the large

number of possible worlds, we do not directly compare with it. Instead, we will limit the number of

possible worlds of each tuple to 3 as discussed in Section 5.2 and evaluate in Section 6.4.

Hyper-parameter setting. We use SVM and linear regression as the default downstream model

for classification and regression tasks, respectively. We vary the downstream models in Section 6.6.

For model training, we use SGD and k-inverse decay scheduling, i .e ., αk = α0/(1 + bk) (α0 and b
are hyper-parameters to be tuned independently for different methods). The sample size h is set to

200 as default and we vary the size in Section 6.6. The number of training epochs is set as 20. We

also impute the test data using the same method that is applied to the train data before testing.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:19

6.2 Overall Evaluation
In this part, we compare GoodCore solutions with baselines.We use ρ = K

|D |
to denote the proportion

of coreset to the entire train set. We set ρ = 0.005 for datasets (1)-(4), ρ = 0.001 and ρ = 0.0005 for
larger datasets (5) and (6) respectively. We will further conduct evaluation by varying the coreset

size in Section 6.3.

6.2.1 Evaluation of model accuracy. The results are provided in Figure 8. To summa-

rize, the result could be generally ranked as G(D,⟲H)/C(H(D))/Complete > G(D,⟲A

)/BoostClean/Best − Auto > C(A(D)) > MixCore > ActiveClean > H(C(D))/A(C(D)) > Origin.
Next, we explain the results.

In general, on all datasets, our method G(D,⟲H), Complete and C(H(D)) perform the best.

Complete and C(H(D)) achieve a high accuracy because they ask the human to impute missing

values accurately, but incur a high human cost. For example, Complete and C(H(D)) achieve
accuracy of 71.9% and 71.7% on Adult. G(D,⟲H) is competitive with them because it selects a good

coreset that can well represent the unknown ground truth via gradient approximation. In addition,

we can observe that G(D,⟲H) performs better than G(D,⟲A) because human imputation is more

accurate than automatic methods. For example, on Adult,G(D,⟲H) has an accuracy of 71.7%, while

G(D,⟲A) and others are below 68%. G(D,⟲A), BoostClean and Best-Auto have competitive

performance on accuracy. BoostClean and Best-Auto can have a not bad performance because

they impute all tuples and train on the entire dataset, but they cannot achieve efficient training (see

6.2.2). But we can train on the much smaller coreset generated by G(D,⟲A) with a good accuracy,

because GoodCore considers the possible repairs to derive the coreset that can approximate the

full gradient of the entire dataset. Given the same number of tuples to be imputed by human,

G(D,⟲H) also outperforms ActiveClean because we have theoretical guarantees on the gradient

approximation. For other baselines, H(C(D)) and A(C(D)) do not perform well because they select

the coreset from an incomplete dataset. C(A(D)) cannot achieve a good performance because the

selected coreset can not well represent the complete entire dataset, as it does not consider possible

repairs as our method. MixCore does not perform well (e .д., 65.2% on Adult) because G(D,⟲H)

and G(D,⟲A) select a better coreset considering the full data. For Origin, on Adult, the model

has an accuracy of 61.3% because of the incomplete tuples.

6.2.2 Evaluation of the efficiency. We evaluate the efficiency of all methods, including the machine

cost and human cost.

Machine cost. Machine cost is shown in Figure 9. The results could be ranked as

H(C(D))/A(C(D))/G(D,⟲H)/G(D,⟲A)/C(H(D))/MixCore < C(A(D)) < Complete < Origin <

-./0123456� �
���

���

��

	�

�

��

��

�
�
�
%
"
�
�
&

�����%"#�"&

-./0123456� �
���

��

	�

�

��

��

���

�
�
�
%
"
�
�
&

������

-./0123456� �
���

�	�

�
�

���

���

��

	�

�
�
�
%
"
�
�
&

������%!$

-./0123456� �
���

���

�	�

�
�

���

���

�
�
�
%
"
�
�
&

�����"���$

-./0123456� �
�

	

�

�

��

�
�
�

������ ����"�

-./0123456� �
�

	

�

�

�
�
�

������"

89:;<=>?@A� ��

	�

�

��

��

�

�#
&

��
&

#'
+�

�����-*+�*0
89:;<=>?@A� ��

	�

�

��

��

�

�#
&

��
&

#'
+�

������
89:;<=>?@A� ��

	�

�
��
��
�
��

�#
&

��
&

#'
+�

������-%,

89:;<=>?@A� ��

�

	��

	�

�#
&

��
&

#'
+�

�����*��#,
89:;<=>?@A� ��

	�

�

��

��

�#
&

��
&

#'
+�

�����#$��"�*�
89:;<=>?@A� ��

	��

��

���

���

�#
&

��
&

#'
+�

� ���#*

�*#!#'�8
��,#.��%��'�9
�((+,�%��'�:

��+,��-,(�;
�(&)%�,��<
�#/�(*��=

��������>
��������?
��������@

��������A
�����1�������
�����1�������

1

2

10

3

4

5

6

7

8

12

11

9

1 2 103 4 5 6 7 8 12119 1 2 103 4 5 6 7 8 12119 1 2 103 4 5 6 7 8 12119

1 2 103 4 5 6 7 8 12119 1 2 103 4 5 6 7 8 12119 1 2 103 4 5 6 7 8 12119

Fig. 8. Effectiveness of different methods.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

157:20 Chengliang Chai et al.

89:;<=>?@A� ��
	�

�
��
��
�

�#
&

��
&

#'
+�

�����-*+�*0
89:;<=>?@A� ��

	�

�
��
��
�

�#
&

��
&

#'
+�

������
89:;<=>?@A� ��

	�

�
��
��
�
��

�#
&

��
&

#'
+�

������-%,

89:;<=>?@A� ��

�

	��

	�

�#
&

��
&

#'
+�

�����*��#,
89:;<=>?@A� ��

	�

�
��
��

�#
&

��
&

#'
+�

�����#$��"�*�
89:;<=>?@A� ��

	��

��
���
���

�#
&

��
&

#'
+�

� ���#*

�*#!#'�8
��,#.��%��'�9
�((+,�%��'�:

��+,��-,(�;
�(&)%�,��<
�#/�(*��=

��������>
��������?
��������@

��������A
�����1�������
�����1�������

1 2 103 4 5 6 7 8 12119 1 2 103 4 5 6 7 8 12119 1 2 103 4 5 6 7 8 12119

1 2 103 4 5 6 7 8 12119 1 2 103 4 5 6 7 8 12119 1 2 103 4 5 6 7 8 12119

89:;<=>?@A� ��

	�

�

��

��

�

�#
&

��
&

#'
+�

�����-*+�*0
89:;<=>?@A� ��

	�

�

��

��

�

�#
&

��
&

#'
+�

������
89:;<=>?@A� ��

	�

�
��
��
�
��

�#
&

��
&

#'
+�

������-%,

89:;<=>?@A� ��

�

	��

	�

�#
&

��
&

#'
+�

�����*��#,
89:;<=>?@A� ��

	�

�

��

��
�#

&
��

&
#'

+�

�����#$��"�*�
89:;<=>?@A� ��

	��

��

���

���

�#
&

��
&

#'
+�

� ���#*

�*#!#'�8
��,#.��%��'�9
�((+,�%��'�:

��+,��-,(�;
�(&)%�,��<
�#/�(*��=

��������>
��������?
��������@

��������A
�����1�������
�����1�������

1

2

10

3

4

5

6

7

8

12

11

9

Fig. 9. Efficiency of different methods. Note that only machine cost (i .e ., runtime of machine) is considered.

Table 2. Human cost of different methods

Datasets G(D,⟲H) H(C(D)) C(H(D))
Nursery 37 22 3278

HR 44 32 5475

Adult 63 81 10752

Credit 52 67 -

BikeShare 38 25 -

Air 98 102 -

ActiveClean < BoostClean/Best − Auto. We can observe that the first 5 methods in the ranking

have low machine cost, mainly because they train based on the selected coreset and do not need

iterative training. G(D,⟲H) and G(D,⟲A) are slightly slower because they need to iterate several

possible repairs during the process of coreset selection. But G(D,⟲H) is still more efficient than

Origin, Complete, BoostClean and Best-Auto by more than one order of magnitude, because

they need to train on the entire training data. Moreover, ActiveClean and BoostClean are not

efficient either because they incorporate multiple training times, so as to estimate the gradient

while data imputation. Best-Auto is slow because training multiple imputation models takes time.

Human cost. In terms of the human cost, C(H(D)), H(C(D)), G(D,⟲H) and ActiveClean involve
human. As shown in Table 2, C(H(D)) is very expensive because it asks the human to impute

all missing tuples. For example, on datset Adult, 10752 tuples have to be imputed. We do not

compare Credit , BikeShare and Air for C(H(D)) because they do not have the ground truth. But
H(C(D)) and G(D,⟲H) are cost-effective because human just needs to impute missing tuples in the

much smaller coreset. For example, they only cost 81 and 63 tuples on dataset Adult respectively.

ActiveClean asks the human to iteratively impute the data. Given the same number of tuples to

impute, our method can achieve much higher accuracy (see Section 6.3).

Summary.We draw the following experiment conclusions. (1) Our proposed methods G(D,⟲H)

and G(D,⟲A) can achieve high model accuracy because the selected coreset can well represent the

underlying ground truth by gradient approximation considering possible repairs. Meanwhile, they

are practical because of the low machine cost. (2) Compared with C(H(D)) that involves human to

impute the entire dataset D, the human cost of G(D,⟲H) is much lower, as observed in Table 2,

e.g., 37 vs. 3278 on the Nursery dataset. Thus, we can choose G(D,⟲H) when we want to achieve

high model accuracy and afford a certain human cost. (3) If we neither care very much about the

accuracy nor consider to incur human cost, the much more efficient G(D,⟲A) is a good choice.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:21

10 4 10 3 10 2
Propotion of Coreset

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Ac
cu

ra
cy

(a) HR
10 4 10 3 10 2

Propotion of Coreset
0.50
0.55
0.60
0.65
0.70
0.75

Ac
cu

ra
cy

(b) Adult
10 4 10 3 10 2

Propotion of Coreset
0
5

10
15
20
25

M
SE

(c) BikeShare

G(D, H) ActiveClean

Fig. 10. Coreset size selection of GoodCore.

6.3 Coreset Size Selection of GoodCore
Recap that GoodCore needs the user-specified coreset size as input. Thus, we discuss how to select

an appropriate coreset size. We adopt a simple yet effective solution that starts from a coreset with

a small size, train over it and evaluate via a validation set, enlarge the coreset and iteratively train

until the performance does not improve much. To be specific, initially, we begin with ρ = 10
−4
, and

enlarge the coreset by 2 times iteratively. If the performance on validation set varies no more than

0.5% within three successive iterations, we will stop. Figure 10 shows the performance on dataset

HR , Adult and BikeShare when varying the coreset size. We can see that the performance first

improves rapidly, then remains stable just after several iterations. For example, on dataset Adult,
when ρ = 5 × 10

−3
, the accuracy has improved to 72.85% on the validation set. Empirically, an ideal

coreset size is between ρ = 10
−3

to 10
−2
.

Summary. The results show that coreset size is not difficult to determine. If the user is willing to

specify a coreset size like in Section 6.2 based on the empirical finding, we can directly compute a

coreset without training. If she cannot, we can also get a good coreset with just several training

iterations over small coresets, which is also efficient.

Compare with ActiveClean. Figure 10 reports an interesting comparison with ActiveClean.
Specifically, in ActiveClean, we use the coreset size K as the budget, i .e ., number of tuples to be

imputed by human in each active cleaning iteration. We observe that at the beginning, when the

coreset size is very small, ActiveClean is better because it trains with the entire dataset including

the imputed tuples, while we train the model using only few tuples in the coreset. However, as with

the increase of the coreset size, we see that G(D,⟲H) outperforms ActiveClean. This is because
ActiveClean uses a heuristic method to estimate the impact of tuples to the overall gradient, which

is not theoretically bounded (e .д., with gradient bounds like Coreset) and thus not accurate enough.

For G(D,⟲H), it can achieve high accuracy with a proper coreset size, which is not large.

6.4 Batch Algorithm of GoodCore
In Section 6.2, G(D,⟲H) outperforms other baselines on accuracy, but requires many human

iterations. In this part, we evaluate the batch algorithm of GoodCore by varying the batch size b,
i .e ., Algorithm 3 to reduce the number of iterations. Intuitively, the algorithm is G(D,⟲H) when

b = 1. Then we increase b until a single batch with a size b can contain all incomplete tuples in the

coreset with size K , which is in fact the algorithm H(G(D)). Due to the large number of possible

worlds, we adopt the heuristic method in Section 5.2 to set l = 3 when b > 1.

In Figure 11, the x-axis denotes the batch size and the y-axis denotes the test performance on

dataset Adult and BikeShare . We can see that when b is small (i .e ., b ≤ 5), the performance does

not significantly decrease (e .д., on Adult, the accuracy decrease from 71.7% to 71.2%.). When b
keeps increasing, the performance slightly decreases. Thus, GoodCore is not sensitive to the batch

size b and the Algorithm 3 can reduce the number of human iterations without sacrificing much

model performance.

In this part, we also vary the number of possible worlds by varying l , which is the number of

possibles world per tuple. The larger l , the larger number of possible worlds we have. The results

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

157:22 Chengliang Chai et al.

1 5 10 20 4060
Batch Size b

0.66
0.68
0.70
0.72
0.74

Ac
cu

ra
cy

(a) Adult

1 5 10 20 3040
Batch Size b

0
1
2
3
4
5
6

M
SE

(b) BikeShare

G(D, H)

Fig. 11. GoodCore for batch algorithm.

Table 3. The number of possible worlds datasets

Methods Nursery HR Adult

H(G(D)) 10
201

10
201

10
202

A(G(D)) 10
201

10
201

10
202

G(D,⟲H) 10
3

10
3

10
4

G(D,⟲A) 10
3

10
3

10
4

1 5 10 15 20
l (#-possible worlds/tuple)

0.72
0.74
0.76
0.78
0.80

Ac
cu

ra
cy

(a) HR
1 5 10 15 20

l (#-possible worlds/tuple)
0.63
0.65
0.67
0.69
0.71

Ac
cu

ra
cy

(b) Adult

G(D, H) G(D, A)

Fig. 12. Effectiveness when varying l .

1 5 10 15 20
l (#-possible worlds/tuple)
0

40
80

120
160

Ti
m

e(
m

in
s)

(a) HR
1 5 10 15 20

l (#-possible worlds/tuple)
0

50
100
150
200

Ti
m

e(
m

in
s)

(b) Adult

G(D, H) G(D, A)

Fig. 13. Efficiency when varying l .

0 5e3 1e4
Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

(a) HR
0 5e3 1e4

Iterations
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

(b) Adult

G(D, H) Complete

Fig. 14. Convergence of GoodCore.

0 5e3 1e4
Iterations

1
2
3
4
5
6
7
8
9

Lo
ss

(a) HR
0 5e3 1e4

Iterations
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Lo
ss

(b) Adult

G(D, H) Complete

Fig. 15. Loss of GoodCore.

are shown in Figures 12 and 13. In terms of the accuracy, we can see that with l increasing (fixing

b = 10), the accuracy increases first and then remains stable soon, but the time keeps increasing

because more possible worlds indicate more computation. Hence, we do not need a large l .
When it comes to the number of possible worlds, we would like to clarify that we do not compare

with H(G(D)) and A(G(D)) because the number of possible worlds of D is very large, which is

infeasible to compute. We show the number in Table 3, where we also report the numbers of

possible worlds of G(D,⟲H) and G(D,⟲A) in each iteration, which are practical to compute.

6.5 Convergence Evaluation
In Section 5.3, we have shown the convergence rate of GoodCore theoretically. In this part, we test

the convergence of training over the coreset (G(D,⟲H)) and entire data (Complete) empirically.

Figure 14 shows the test accuracy of two methods with the number of training iterations increasing.

We can observe that on both datasets, training on the coreset converges much faster than training

on the full data. For example, on dataset Adult, it takes ∼40 iterations for GoodCore to converge,

which is 180× faster than Complete. This is because GoodCore has the same convergence rate with

training over the entire dataset as discussed in the theoretical result of Section 5.3, but the entire

dataset (e .д., Adult) is 200× (similar to 180×) larger than the coreset (ρ = 0.005). That is, GoodCore
converges with the same number of epochs as training on the entire dataset. Since the size of

coreset is much smaller, GoodCore is more efficient. Also, we can achieve competitive accuracy as

training on full data by approximating the full gradient with a theoretical bound.

Furthermore, we report the loss change to reflect the relation between actual convergence rate

and theoretical results. In Figure 15, on dataset Adult, the initial loss is 8.4. According to the

theoretical convergence rate O(1√
k
) (this k denotes the k-th epoch), the loss should decrease to

around 3.8 at the end of 5-th epoch (≈ 3200-th iteration). Actually, the actual loss decreases to 3.25

at that time, which is close to the theoretical value.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:23

22 26 210
Sample Size

0.62
0.64
0.66
0.68
0.70
0.72

Ac
cu

ra
cy

(a) Adult
22 26 210

Sample Size
1
3
5
7
9

M
SE

(b) BikeShare

G(D, H)

Fig. 16. Varying sample size.

Logistic
Reg.

SVM MLP0.72
0.74
0.76
0.78
0.80
0.82

A
cc

ur
ac

y

(a) HR

Logistic
Reg.

SVM MLP0.62
0.64
0.66
0.68
0.70
0.72
0.74

A
cc

ur
ac

y

(b) Adult

MLP RNN
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

M
SE

(c) Air

Complete G(D, ↺H) G(D, ↺A)

Fig. 17. Varying downstream model.

0.2 0.4 0.6 0.8 1.0
% of Incom. Tuples

0.70
0.72
0.74
0.76
0.78
0.80
0.82

Ac
cu

ra
cy

(a) HR
0.2 0.4 0.6 0.8 1.0

% of Incom. Tuples
0.64
0.66
0.68
0.70
0.72
0.74

Ac
cu

ra
cy

(b) Adult

G(D, H)

Fig. 18. Varying missing tuple rate.

0.2 0.3 0.4 0.5
Rate of missing values

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

(a) HR
0.2 0.3 0.4 0.5
Rate of missing values

0.57

0.61

0.65

0.69

Ac
cu

ra
cy

(b) Adult

G(D, H)

Fig. 19. Varying missing value rate.

6.6 Sensitivity Analysis
Varying the sample size. In this part, we vary the sample size h and evaluate the performance.

The experimental results are shown in Figure 16. We vary the sample size h from 2
2
to 2

10
. We can

see that when h is too small, the performance is low. The reason is that GoodCore cannot precisely

estimate the utilities of tuples when h is small. When the sample size increases, we can see that the

performance improves rapidly and finally becomes stable, which indicates that GoodCore is not
much sensitive to the sample size when h is not too small.

Varying the downstreammodels. Recap that GoodCore can be used on different convex models.

Thus, in this part, we apply GoodCore on different convex models and evaluate the performance. We

evaluate logistic regression and SVM for classification tasks. For regression tasks, we evaluate linear

regression, ridge regression and SVM regression. We can see that in Figure 17 (a) and (b), on dataset

Adult, G(D,⟲H) achieved 71.7% accuracy for SVM, better than on logistic regression (69.4%).

Although different downstream models may have different performance, GoodCore can improve the

model performance for the specific downstream model. In order to show that GoodCore can be used

for other types of models like neural networks, we compare with Multilayer Perceptron (MLP, fully

connected networks of 2 hidden layers with 256 nodes for each layer), although GoodCore does not

hold theoretical guarantee for this non-convex model. As shown in Figure 17, we can see that MLP

achieves almost the same performance as the ground truth. This is because the coreset selected

by GoodCore can also represent the full dataset. However, in Figure 17(c), on a large dataset Air
(with metric MSE, the lower the better), neural network based methods (we also implement RNN,

2 hidden layers with 128 nodes for each layer) can have a better accuracy but the coreset cannot

perfectly achieve the same performance. This may because this large dataset has more informative

things to learn, and it is hard for the coreset-based solution to well represent the dataset without

the theoretical guarantee.

Varying the percentage of incomplete tuples. In this part, we vary the rate of missing tuples

and evaluate the performance, as shown in Figure 18. Note that the rate denotes the percentage

of incomplete tuples rather than the cell values. Even if a tuple just has one missing attribute, it

is regarded as incomplete. We vary the percentage from 20% to 100%. We can observe that the

performance does not decrease much with the percentage increasing from 20% to 50%, which

indicates that GoodCore is not very sensitive to the percentage of incomplete tuples in this range.

After that, the accuracy decreases because there are more missing tuples.

Besides, we also vary the rate of missing cell values in Figure 19. In this scenario, for example,

50% missing values of a dataset indicates more number of missing cell values than the scenario of

50% missing tuples. Hence, we can see that the accuracy decreases more quickly than Figure 18.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

157:24 Chengliang Chai et al.

7 RELATEDWORK
Task-agnostic incomplete data imputation. Data imputation has been widely studied for years.

Existing methods can be divided into two categories: statistic-based methods and learning-based

methods. The former one always uses the statistic information [22, 52] (like mean, median or

mode) to impute the missing values. Also, some methods compute the similarity of the incomplete

tuples to the complete tuples and use the most similar one to impute the missing values [8, 30, 73].

Recently, to improve the imputation accuracy, many learning-based methods focus on how to use

ML to learn the data distribution (e .д., MissForest imputation [71], MICE [69], IIM [79]), and then

use the trained model to predict the missing values. Besides traditional ML models, some deep

learning models are also used for data imputation (e .д., autoencoder [26, 53, 61], GANs [70, 78]).
Coreset selection. Huang et al. [29] studied how to compute and continuously update the coreset

while training. But it is rather time-consuming because of the training process. To solve this

problem, works [13, 14] selected the coreset without training in advance, but they can only be

customized to particular model types respectively. Another line of works [35, 58, 59, 74] focused

on selecting the coreset to approximate the full gradient without training in advance for multiple

model types, which is regarded as an optimization problem that can be solved by the three nested

loops framework (see Section 2.2).

In short, none of them considers coreset selection over incomplete data. Different from them, we

make the first attempt to select coresets over incomplete data.

Data cleaning for ML. Recently, there have been several works that clean the data to optimize

the ML model. In contrast to the above discussion about task-agnostic incomplete data imputation,

data cleaning for ML is task-aware, which triggers new technical challenges. SampleClean [37]

focuses on cleaning selected samples, so as to answer SQL aggregate queries more efficiently,

but it is not for any model. CPClean [31] proposes certain prediction to impute missing data for

optimizing ML models. Different from us, it is customized to nearest neighbor classifiers rather

than convex models solved by the gradient decent algorithm. BoostClean [36] regards data cleaning

as a boosting problem that iteratively selects from a predefined set of cleaning algorithms, so as to

continuously maximize the accuracy of a validation set with training iteratively. Closer to our work

is ActiveClean [38], which progressively cleans the data tuples that are likely to much influence the

model measured by the gradients. Different from us, given a budget K , we can select the coreset

without training, but ActiveClean needs to train iteratively and label a set of validation dataset. We

empirically show that our method outperforms ActiveClean on model accuracy and efficiency.

Data management for ML. Data management techniques [18] can be utilized to improve the

effectiveness of ML model, including data discovery [17, 43, 44], data cleaning [15, 24, 25, 27, 46, 47,

54–56, 77], data exploration [48–51, 65–67], data compression [76, 80], and data labeling [16, 40].

8 CONCLUSION
In this paper, we propose the GoodCore framework to select a good coreset over the incomplete data,

which achieves data-effective and data-efficient ML. We formulate it as an expected optimal coreset

selection problem, which is NP-hard. Then we propose a greedy algorithm with an approximation

ratio.We also propose to involve imputation-in-the-loop strategies into GoodCore to further improve

the efficiency. We conduct experiments on real-world datasets to verify the effectiveness and

efficiency of GoodCore.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their helpful comments. This work is supported

by NSF of China (62102215, 62122090, 62072461, 61925205, 61632016), Huawei, Zhejiang Lab’s

International Talent Fund for Young Professionals, BNRist, and TAL Education.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:25

REFERENCES
[1] 2022. https://github.com/awslabs/datawig.

[2] 2022. https://archive.ics.uci.edu/ml/datasets/nursery.

[3] 2022. https://archive.ics.uci.edu/ml/datasets/adult.

[4] 2022. https://www.kaggle.com/.

[5] 2022. https://ride.capitalbikeshare.com/system-data.

[6] 2022. https://auctus.vida-nyu.org/.

[7] Zeyuan Allen-Zhu, Yang Yuan, and Karthik Sridharan. 2016. Exploiting the structure: Stochastic gradient methods

using raw clusters. NeurIPS 29 (2016).
[8] Naomi S Altman. 1992. An introduction to kernel and nearest-neighbor nonparametric regression. The American

Statistician 46, 3 (1992), 175–185.

[9] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Consistent Query Answers in Inconsistent Databases.

In PODS. ACM Press, 68–79.

[10] Leopoldo E. Bertossi. 2011. Database Repairing and Consistent Query Answering. Morgan & Claypool Publishers.

[11] Leopoldo E. Bertossi. 2019. Database Repairs and Consistent Query Answering: Origins and Further Developments. In

PODS. ACM, 48–58.

[12] Felix Biessmann, Tammo Rukat, Phillipp Schmidt, Prathik Naidu, Sebastian Schelter, Andrey Taptunov, Dustin Lange,

and David Salinas. 2019. DataWig: Missing Value Imputation for Tables. JMLR 20, 175 (2019), 1–6.

[13] Vladimir Braverman, Dan Feldman, and Harry Lang. 2016. New Frameworks for Offline and Streaming Coreset

Constructions. CoRR abs/1612.00889 (2016).

[14] Trevor Campbell and Tamara Broderick. 2018. Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent. In

ICML 2018, Vol. 80. PMLR, 697–705.

[15] Chengliang Chai, Lei Cao, Guoliang Li, Jian Li, Yuyu Luo, and Samuel Madden. 2020. Human-in-the-loop outlier

detection. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 19–33.
[16] Chengliang Chai, Guoliang Li, Jian Li, Dong Deng, and Jianhua Feng. 2016. Cost-effective crowdsourced entity

resolution: A partial-order approach. In SIGMOD. 969–984.
[17] Chengliang Chai, Jiabin Liu, Nan Tang, Guoliang Li, and Yuyu Luo. 2022. Selective data acquisition in the wild for

model charging. PVLDB 15, 7 (2022), 1466–1478.

[18] Chengliang Chai, Jiayi Wang, Yuyu Luo, Zeping Niu, and Guoliang Li. 2022. Data management for machine learning:

A survey. TKDE (2022).

[19] Kai Lai Chung. 1954. On a stochastic approximation method. The Annals of Mathematical Statistics (1954), 463–483.
[20] Ting Deng, Wenfei Fan, and Floris Geerts. 2016. Capturing Missing Tuples and Missing Values. ACM Trans. Database

Syst. 41, 2 (2016), 10:1–10:47.
[21] Irit Dinur and Samuel Safra. 2005. On the hardness of approximating minimum vertex cover. Annals of mathematics

(2005), 439–485.

[22] Alireza Farhangfar, Lukasz A. Kurgan, and Witold Pedrycz. 2007. A Novel Framework for Imputation of Missing

Values in Databases. IEEE Trans. Syst. Man Cybern. Part A 37, 5 (2007), 692–709.

[23] Dan Feldman. 2020. Introduction to Core-sets: an Updated Survey. CoRR abs/2011.09384 (2020).

[24] Yunjun Gao and Xiaoye Miao. 2018. Query processing over incomplete databases. Synthesis Lectures on Data
Management 10, 2 (2018), 1–122.

[25] Congcong Ge, Yunjun Gao, Xiaoye Miao, Bin Yao, and Haobo Wang. 2020. A hybrid data cleaning framework using

markov logic networks. TKDE 34, 5 (2020), 2048–2062.

[26] Lovedeep Gondara and KeWang. 2017. Multiple Imputation Using Deep Denoising Autoencoders. CoRR abs/1705.02737

(2017).

[27] Shuang Hao, Chengliang Chai, Guoliang Li, Nan Tang, Ning Wang, and Xiang Yu. 2020. Outdated fact detection in

knowledge bases. In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 1890–1893.
[28] Thomas Hofmann, Aurelien Lucchi, Simon Lacoste-Julien, and Brian McWilliams. 2015. Variance reduced stochastic

gradient descent with neighbors. Advances in Neural Information Processing Systems 28 (2015).
[29] Jiawei Huang, Ruomin Huang, Wenjie Liu, Nikolaos M. Freris, and Hu Ding. 2021. A Novel Sequential Coreset Method

for Gradient Descent Algorithms. In ICML 2021, Vol. 139. PMLR, 4412–4422.

[30] José M. Jerez, Ignacio Molina, Pedro J. García-Laencina, Emilio Alba, Nuria Ribelles, Miguel Martín, and Leonardo

Franco. 2010. Missing data imputation using statistical and machine learning methods in a real breast cancer problem.

Artif. Intell. Medicine 50, 2 (2010), 105–115.
[31] Bojan Karlas, Peng Li, Renzhi Wu, Nezihe Merve Gürel, Xu Chu, Wentao Wu, and Ce Zhang. 2020. Nearest Neighbor

Classifiers over Incomplete Information: From Certain Answers to Certain Predictions. Proc. VLDB Endow. 14, 3 (2020),
255–267.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

https://github.com/awslabs/datawig
https://archive.ics.uci.edu/ml/datasets/nursery
https://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/
https://ride.capitalbikeshare.com/system-data
https://auctus.vida-nyu.org/

157:26 Chengliang Chai et al.

[32] Shahidul Islam Khan and Abu Sayed Md. Latiful Hoque. 2020. SICE: an improved missing data imputation technique.

J. Big Data 7, 1 (2020), 37.
[33] Krishnateja Killamsetty, S Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. 2021. Grad-match: Gradient

matching based data subset selection for efficient deep model training. In ICML. 5464–5474.
[34] KrishnaTeja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh K. Iyer. 2021. GLISTER:

Generalization based Data Subset Selection for Efficient and Robust Learning. In AAAI 2021,. AAAI Press, 8110–8118.
[35] Katrin Kirchhoff and Jeff A. Bilmes. 2014. Submodularity for Data Selection in Machine Translation. In EMNLP 2014.

ACL, 131–141.

[36] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, and Eugene Wu. 2017. BoostClean: Automated Error Detection

and Repair for Machine Learning. CoRR abs/1711.01299 (2017).

[37] Sanjay Krishnan, Jiannan Wang, Michael J. Franklin, Ken Goldberg, Tim Kraska, Tova Milo, and Eugene Wu. 2015.

SampleClean: Fast and Reliable Analytics on Dirty Data. IEEE Data Eng. Bull. 38, 3 (2015), 59–75.
[38] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Ken Goldberg. 2016. ActiveClean: Interactive

Data Cleaning For Statistical Modeling. Proc. VLDB Endow. 9, 12 (2016), 948–959.
[39] Claude Lemaréchal. 2012. Cauchy and the gradient method. Doc Math Extra 251, 254 (2012), 10.
[40] Guoliang Li, Chengliang Chai, Ju Fan, Xueping Weng, Jian Li, Yudian Zheng, Yuanbing Li, Xiang Yu, Xiaohang Zhang,

and Haitao Yuan. 2018. CDB: A crowd-powered database system. Proceedings of the VLDB Endowment 11, 12 (2018),
1926–1929.

[41] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021. CleanML: A Study for Evaluating the Impact

of Data Cleaning on ML Classification Tasks. In ICDE. 13–24.
[42] Hui Lin and Jeff Bilmes. 2011. A class of submodular functions for document summarization. In Proceedings of the 49th

annual meeting of the association for computational linguistics: human language technologies. 510–520.
[43] Jiabin Liu, Chengliang Chai, Yuyu Luo, Yin Lou, Jianhua Feng, and Nan Tang. 2022. Feature augmentation with

reinforcement learning. In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 3360–3372.
[44] Jiabin Liu, Fu Zhu, Chengliang Chai, Yuyu Luo, and Nan Tang. 2021. Automatic data acquisition for deep learning.

Proceedings of the VLDB Endowment 14, 12 (2021), 2739–2742.
[45] Tongyu Liu, Ju Fan, Yinqing Luo, Nan Tang, Guoliang Li, and Xiaoyong Du. 2021. Adaptive data augmentation for

supervised learning over missing data. Proc. VLDB Endow. 14, 7 (2021), 1202–1214.
[46] Yuyu Luo, Chengliang Chai, Xuedi Qin, Nan Tang, and Guoliang Li. 2020. Interactive Cleaning for Progressive

Visualization through Composite Questions. In 36th IEEE International Conference on Data Engineering, ICDE 2020,
Dallas, TX, USA, April 20-24, 2020. IEEE, 733–744. https://doi.org/10.1109/ICDE48307.2020.00069

[47] Yuyu Luo, Chengliang Chai, Xuedi Qin, Nan Tang, and Guoliang Li. 2020. VisClean: Interactive Cleaning for Progressive

Visualization. Proc. VLDB Endow. 13, 12 (2020), 2821–2824. https://doi.org/10.14778/3415478.3415484

[48] Yuyu Luo, Xuedi Qin, Chengliang Chai, Nan Tang, Guoliang Li, and Wenbo Li. 2022. Steerable Self-Driving Data

Visualization. IEEE Trans. Knowl. Data Eng. 34, 1 (2022), 475–490. https://doi.org/10.1109/TKDE.2020.2981464

[49] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. DeepEye: Towards Automatic Data Visualization. In 34th
IEEE International Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018. IEEE Computer Society,

101–112. https://doi.org/10.1109/ICDE.2018.00019

[50] Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin. 2021. Synthesizing Natural Language to

Visualization (NL2VIS) Benchmarks fromNL2SQL Benchmarks. In SIGMOD ’21: International Conference onManagement
of Data, Virtual Event, China, June 20-25, 2021. ACM, 1235–1247. https://doi.org/10.1145/3448016.3457261

[51] Yuyu Luo, Nan Tang, Guoliang Li, Jiawei Tang, Chengliang Chai, and Xuedi Qin. 2022. Natural Language to Visualization

by Neural Machine Translation. IEEE Trans. Vis. Comput. Graph. 28, 1 (2022), 217–226. https://doi.org/10.1109/TVCG.

2021.3114848

[52] Chris Mayfield, Jennifer Neville, and Sunil Prabhakar. 2010. ERACER: a database approach for statistical inference and

data cleaning. In SIGMOD. ACM, 75–86.

[53] John T McCoy, Steve Kroon, and Lidia Auret. 2018. Variational autoencoders for missing data imputation with

application to a simulated milling circuit. IFAC-PapersOnLine 51, 21 (2018), 141–146.
[54] Xiaoye Miao, Yunjun Gao, Su Guo, and Wanqi Liu. 2018. Incomplete data management: a survey. Frontiers of Computer

Science 12 (2018), 4–25.
[55] Xiaoye Miao, Yangyang Wu, Lu Chen, Yunjun Gao, Jun Wang, and Jianwei Yin. 2021. Efficient and effective data

imputation with influence functions. Proceedings of the VLDB Endowment 15, 3 (2021), 624–632.
[56] Xiaoye Miao, Yangyang Wu, Lu Chen, Yunjun Gao, and Jianwei Yin. 2022. An Experimental Survey of Missing Data

Imputation Algorithms. TKDE (2022).

[57] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas Krause. 2015. Lazier

than lazy greedy. In AAAI, Vol. 29.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

https://doi.org/10.1109/ICDE48307.2020.00069
https://doi.org/10.14778/3415478.3415484
https://doi.org/10.1109/TKDE.2020.2981464
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1145/3448016.3457261
https://doi.org/10.1109/TVCG.2021.3114848
https://doi.org/10.1109/TVCG.2021.3114848

GoodCore: Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data 157:27

[58] Baharan Mirzasoleiman, Jeff A. Bilmes, and Jure Leskovec. 2020. Coresets for Data-efficient Training of Machine

Learning Models. In ICML 2020, Vol. 119. 6950–6960.
[59] Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. 2020. Coresets for robust training of deep neural networks

against noisy labels. NeurIPS 33 (2020), 11465–11477.
[60] Alexander Munteanu and Chris Schwiegelshohn. 2018. Coresets-methods and history: A theoreticians design pattern

for approximation and streaming algorithms. KI-Künstliche Intelligenz 32, 1 (2018), 37–53.
[61] Alfredo Nazábal, Pablo M. Olmos, Zoubin Ghahramani, and Isabel Valera. 2020. Handling incomplete heterogeneous

data using VAEs. Pattern Recognit. 107 (2020), 107501.
[62] Angelia Nedić and Dimitri Bertsekas. 2001. Convergence rate of incremental subgradient algorithms. In Stochastic

optimization: algorithms and applications. Springer, 223–264.
[63] Felix Neutatz, Binger Chen, Ziawasch Abedjan, and Eugene Wu. 2021. From Cleaning before ML to Cleaning for ML.

IEEE Data Eng. Bull. (2021).
[64] Andrew Ng. 2021. MLOPs: From Model-centric to Data-centric AI.

[65] Xuedi Qin, Chengliang Chai, Yuyu Luo, Nan Tang, and Guoliang Li. 2020. Interactively discovering and ranking

desired tuples without writing sql queries. In SIGMOD. 2745–2748.
[66] Xuedi Qin, Chengliang Chai, Yuyu Luo, Tianyu Zhao, Nan Tang, Guoliang Li, Jianhua Feng, Xiang Yu, and Mourad

Ouzzani. 2021. Ranking desired tuples by database exploration. In ICDE. IEEE, 1973–1978.
[67] Xuedi Qin, Yuyu Luo, Nan Tang, and Guoliang Li. 2020. Making data visualization more efficient and effective: a

survey. VLDB J. 29, 1 (2020), 93–117. https://doi.org/10.1007/s00778-019-00588-3

[68] LKPJ Rdusseeun and P Kaufman. 1987. Clustering by means of medoids. In Proceedings of the statistical data analysis
based on the L1 norm conference, neuchatel, switzerland, Vol. 31.

[69] Patrick Royston and Ian R White. 2011. Multiple imputation by chained equations (MICE): implementation in Stata.

Journal of statistical software 45 (2011), 1–20.
[70] Indro Spinelli, Simone Scardapane, and Aurelio Uncini. 2020. Missing data imputation with adversarially-trained graph

convolutional networks. Neural Networks 129 (2020), 249–260.
[71] Daniel J. Stekhoven and Peter Bühlmann. 2012. MissForest - non-parametric missing value imputation for mixed-type

data. Bioinform. 28, 1 (2012), 112–118.
[72] Gilbert Strang. 2006. Linear algebra and its applications. Belmont, CA: Thomson, Brooks/Cole.

[73] Bhekisipho Twala, Michelle Cartwright, and Martin J. Shepperd. 2005. Comparison of various methods for handling

incomplete data in software engineering databases. In ISESE 2005. 105–114.
[74] JiayiWang, Chengliang Chai, Nan Tang, Jiabin Liu, and Guoliang Li. 2022. Coresets overMultiple Tables for Feature-rich

and Data-efficient Machine Learning. Proc. VLDB Endow. 16, 1 (2022), 64–76. https://www.vldb.org/pvldb/vol16/p64-

wang.pdf

[75] Richard Wu, Aoqian Zhang, Ihab F. Ilyas, and Theodoros Rekatsinas. 2020. Attention-based Learning for Missing Data

Imputation in HoloClean. In MLSys 2020. mlsys.org.

[76] Ruofan Wu, Feng Zhang, Jiawei Guan, Zhen Zheng, Xiaoyong Du, and Xipeng Shen. 2022. DREW: Efficient Winograd

CNN Inference with Deep Reuse. In Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon, France) (WWW
’22). Association for Computing Machinery, New York, NY, USA, 1807–1816. https://doi.org/10.1145/3485447.3511985

[77] YangyangWu, Xiaoye Miao, Yuchen Peng, Lu Chen, Yunjun Gao, and Jianwei Yin. 2022. An Interactive Data Imputation

System. In DASFAA. Springer, 495–499.
[78] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. 2018. GAIN: Missing Data Imputation using Generative

Adversarial Nets. In ICML, Vol. 80. 5675–5684.
[79] Aoqian Zhang, Shaoxu Song, Yu Sun, and Jianmin Wang. 2019. Learning Individual Models for Imputation. In ICDE.

IEEE, 160–171.

[80] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong Du. 2022. POCLib: A high-performance framework

for enabling near orthogonal processing on compression. IEEE Transactions on Parallel and Distributed Systems 33, 2
(2022), 459–475.

Received October 2022; revised January 2023; accepted February 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 157. Publication date: June 2023.

https://doi.org/10.1007/s00778-019-00588-3
https://www.vldb.org/pvldb/vol16/p64-wang.pdf
https://www.vldb.org/pvldb/vol16/p64-wang.pdf
https://doi.org/10.1145/3485447.3511985

	Abstract
	1 Introduction
	2 Background of Coreset Selection
	2.1 Gradient Descent for Machine Learning
	2.2 Coreset over Complete Data

	3 Coreset Over Incomplete Data
	3.1 Problem Definition
	3.2 Goodcore Framework

	4 Goodcore Algorithm
	4.1 Problem Complexity
	4.2 Expectation Computation

	5 Optimized Goodcore with Imputation-in-the-loop
	5.1 One Tuple Each Iteration
	5.2 One Batch Each Iteration with Human-in-the-loop
	5.3 Convergence Rate Analysis

	6 Experiment
	6.1 Experimental Settings
	6.2 Overall Evaluation
	6.3 Coreset Size Selection of GoodCore
	6.4 Batch Algorithm of GoodCore
	6.5 Convergence Evaluation
	6.6 Sensitivity Analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

