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ABSTRACT
Foundation Models (FMs) are models trained on large corpora of
data that, at very large scale, can generalize to new tasks without
any task-speci�c �netuning. As these models continue to grow in
size, innovations continue to push the boundaries of what these
models can do on language and image tasks. This paper aims to
understand an underexplored area of FMs: classical data tasks like
cleaning and integration. As a proof-of-concept, we cast �ve data
cleaning and integration tasks as prompting tasks and evaluate the
performance of FMs on these tasks. We �nd that large FMs general-
ize and achieve SoTA performance on data cleaning and integration
tasks, even though they are not trained for these data tasks.We iden-
tify speci�c research challenges and opportunities that these models
present, including challenges with private and domain speci�c data,
and opportunities to make data management systems more acces-
sible to non-experts. We make our code and experiments publicly
available at: https://github.com/HazyResearch/fm_data_tasks.

1 INTRODUCTION
FoundationModels (FMs) [19] are models trained on broad data that
can be adapted to a wide range of downstream tasks. These models
have achieved substantial gains across many semantically challeng-
ing tasks such as question answering [20], knowledge base con-
struction [80], and information retrieval [39]. As they have scaled
to hundreds of billions of parameters (e.g. GPT�3 [20], PaLM [22]),
large FMs have demonstrated surprising emergent behaviors and
good zero-shot generalization to new tasks (i.e. no task-speci�c
�netuning) on domains vastly di�erent from the data they were pre-
trained on [22]. These large FMs are often autoregressive language
models (e.g. GPT�3 and PaLM) that are trained to predict the next
word in large text corpora and can be adapted to new tasks given a
simple natural language description of the task (see Figure 1). These
breakthrough capabilities have led to a race for building bigger and
better models, and innovations continue to push the boundaries of
what large FMs can do on a variety of hard language tasks.

A natural question that arises is whether these advances can
bene�t hard classical data tasks (e.g. data cleaning and integration).
While it is clear that FMs bene�t text-intensive tasks, it is not clear
whether these models can be applied to data tasks over structured
data. The symbols commonly found in structured data (e.g. dates,
numbers, alphanumeric codes) are less frequent in natural language
text so it is unclear that FMs possess the ability to reason over them.
Moreover, since FMs are trained to predict the next word, it is non-
obvious that they can work out-of-the-box on complex data tasks.
This paper explores the aforementioned question and introduces
a new research vision for leveraging FMs for data management,
focusing on data cleaning and integration tasks—two keys steps in
data-driven enterprise pipelines.

Recently, a large body of research has applied machine learn-
ing (ML) [49] and deep learning (DL) [57, 75] methods—namely

Title Price

Macbook Pro $1,999.00

Table 1
Title Price

Macbook Air $899.00

Table 2

“Product A is Title: Macbook Pro Price: $1,999
Product B is Title: Macbook Air Price: $899
Are product A and product B the same?”

Foundation Model

No

Figure 1: A large FM can address an entity matching task
using prompting. Rows are serialized into text and passed to
the FM with the question “Are products A and B the same?”.
The FM then generates a string “Yes” or “No” as the answer.

pretrained languagemodels (PLMs) like BERT [32]—to semantically-
complex data tasks. However, these approaches still require a sig-
ni�cant amount of engineering e�ort as they rely on:
• Task-speci�c architectures: Data cleaning and integration en-
capsulatemany di�erent tasks such as entitymatching [78], schema
matching [93], and error detection [41]. Existing approaches,
whether they are rule-, ML- or DL-based, vary greatly from one
task to the other, often with complex, task-speci�c architectures.
For instance, adapting BERT to data tasks requires architectural
changes and �netuning the entire model for each task. This leads
to siloed and hard-to-maintain systems.

• Hard-codedknowledge: Data tasks often rely on domain knowl-
edge (e.g. understanding the relationship between a city and its
zip code for data cleaning constraints) and commonsense reason-
ing. These are usually hard-coded with human-engineered rules
or external knowledge bases [24, 85]. Consequently, systems can
be brittle and fail to generalize to a diverse set of domains.

• Labeled data: ML- andDL-based solutions require copious amounts
of hand-labeled data [9]. For instance, PLMs that have achieved
state-of-the-art (SoTA) results on data tasks (e.g. Ditto [38]) re-
quire a signi�cant amount of task-speci�c labeled data and �ne-
tuning to achieve good performance. Labeling data for each task
is engineering intensive and adds to the di�culty of maintaining
data cleaning and integration systems.
Excitingly, FMs display several useful properties that make them

an appealing choice compared to traditional approaches:
• Task-agnostic architecture: As a result of their natural lan-
guage interface, FMs can be applied to a wide-range of tasks. For
instance, Figure 1 shows how an entity matching task—which
requires identifying whether two table entries refer to the same
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entity—can be cast as a prompting task. This unifying interface
eliminates the need for siloed architectures, in contrast to exist-
ing learned approaches where architectures need to be carefully
crafted for each task (e.g. task-speci�c classi�cation layer).

• Encoded knowledge: Because FMs are trained on large, generic
corpora of data, they contain knowledge about an extensive set
of common entities, and thus do not rely on human-engineered
rules to acquire knowledge [83].

• Limited to no labeled data: FMs can be applied to a breadth of
tasks with little to no labeled data (e.g. few-shot and zero-shot).
When a FM needs to be �ne-tuned, it typically needs dramatically
less labeled data to achieve competitive results [46].

Our goal is to better understand if large FMs can be applied
to data integration and cleaning tasks. We study the behavior of
GPT�3—an early and promising FM. While GPT�3 is already a high
quality model, we expect the signi�cant investment in FMs from
both academia and industry to lead to more performant and scalable
FMs over time. Like many other communities, the data management
community stands to bene�t from these trends. As such, we aim
to understand the advantages and limitations of FMs on data tasks,
by focusing on three key questions.

Howwell do large FMs transfer to data tasks? To answer this,
we cast several data tasks as natural language generation tasks (Sec-
tion 3) and explore whether a single FM can generalize well to these
tasks. In Section 4.2, we quantify the zero- and few-shot perfor-
mance of FMs on �ve enterprise data tasks: entity matching, error
detection, schema matching, data transformation, and data impu-
tation. We �nd that the largest GPT�3 variant (175B parameters)
outperforms SoTA ML-and DL-based approaches on these tasks
with few examples. This is particularly surprising since prior ap-
proaches are fully-�netuned on task-speci�c labeled data for these
tasks, while GPT�3-175B is simply pretrained to generate text.

What are the caveats in applying FMs to data tasks? In Sec-
tion 4.3, we unpack the few-shot “prompt tuning” process—serializing
tabular data to text, casting data tasks as text generation tasks and
constructing demonstrative task examples—for applying FMs to
data tasks. We quantify the e�ects of prompt formatting varia-
tions on performance and the di�erences between manually and
randomly selecting task examples. We �nd that FMs are brittle to
di�erences in prompt formatting and that performance improves
when prompts are manually selected versus randomly selected.

What opportunities do FMs present for data tasks andwhat
are the relevant research challenges? Finally, in Section 5, we dis-
cuss the potential challenges and related research questions with
using FMs in data management pipelines. We discuss the forthcom-
ing shift in how ML systems are built, challenges around updating
FM knowledge, and opportunities and considerations pertaining to
private, temporal and local data.

We hope that our preliminary exploration will encourage the
data management community to explore the e�ectiveness of FMs
for other data tasks and develop techniques to overcome the short-
comings of FMs in this setting.

2 BACKGROUND
We �rst give some background on the di�erent data tasks considered
in this paper and then provide a brief review of FMs.

Yes Yes

Foundation Model

Zero-shot Few-shot

Task Output

Foundation Model

Task Input

Task Description

Task 
Demonstrations

Country: England, City: Kyoto?

Is there an error in Country? 

Country: USA, City: Miami? No
Country: Spain, City: Paris? Yes 

Country: England, City: Kyoto?

Is there an error in Country? 

Figure 2: Di�erent ways to use FMs with “in-context” learn-
ing [20] on an error detection task. For zero-shot (left), the
prompt is the task description and the example to complete.
For few-shot (right), the prompt adds demonstrations of
how to complete the task.

2.1 Problem Setup
We focus on entity matching (EM), error detection (ED), and data
imputation (DI) and describe the setup for these tasks. We denote
⇡ , a structured dataset with = entries, such that each entry is repre-
sented by a collection of< attribute value pairs: for entry 48 2 ⇡ we
have 48 = {48, 9 }1 9< where for attribute 9 , 48, 9 = {attr9 , val9 }.

Entity Matching The goal of EM is to match entities (real-world
objects like people, places and things) across di�erent datasets. For-
mally, given two structured datasets (⇡,⇡ 0) and pairs of entries
4, 4 0 2 ⇡ ⇥⇡ 0, the goal is to predict whether these entries represent
the same entity or not. This problem is usually solved as a classi�-
cation problem, and real-world EM systems are often preceded by
blocking heuristics which are used to remove obvious non-matches.

EM has been extensively studied over the past decade (see [78]
for a survey) and methods broadly fall into three categories: rule-
based, crowd-based [36, 97] and ML/DL-based [49, 75]. Recently,
methods relying on PLMs [57] have become SoTA for this task.

ErrorDetection ED is an important step in data cleaning pipelines.
Given an entry 4 , the goal is to detect attributes 9 where val9 has
an error. The task is framed as a classi�cation problem where the
goal is to predict if val9 is correct for a given 4 .

ED has been studied extensively in both academic and indus-
trial settings [7]. There are a number of successful commercial
o�erings including Trifacta [6] and Tamr [5]. Traditionally, ED
systems have been heavily reliant on rule-based algorithms which
enforce data constraints through functional dependencies or knowl-
edge bases [23, 24, 26]. Additionally, there are statistical-based
approaches such as pattern enforcement [24, 45], outlier detec-
tion [28], and record deduplication [90] algorithms. Recent e�orts
have developed SoTA ML models for ED [41].

Data Imputation DI is a critical step for repairing dirty data
sources. Given an entry 4 withmissing attribute values {attr9 , NULL},
the goal of DI is to infer the missing values. The full range of plau-
sible values for the missing value is not known apriori.
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ABSTRACT
Foundation Models (FMs) are models trained on large corpora of
data that, at very large scale, can generalize to new tasks without
any task-speci�c �netuning. As these models continue to grow in
size, innovations continue to push the boundaries of what these
models can do on language and image tasks. This paper aims to
understand an underexplored area of FMs: classical data tasks like
cleaning and integration. As a proof-of-concept, we cast �ve data
cleaning and integration tasks as prompting tasks and evaluate the
performance of FMs on these tasks. We �nd that large FMs general-
ize and achieve SoTA performance on data cleaning and integration
tasks, even though they are not trained for these data tasks.We iden-
tify speci�c research challenges and opportunities that these models
present, including challenges with private and domain speci�c data,
and opportunities to make data management systems more acces-
sible to non-experts. We make our code and experiments publicly
available at: https://github.com/HazyResearch/fm_data_tasks.

1 INTRODUCTION
FoundationModels (FMs) [19] are models trained on broad data that
can be adapted to a wide range of downstream tasks. These models
have achieved substantial gains across many semantically challeng-
ing tasks such as question answering [20], knowledge base con-
struction [80], and information retrieval [39]. As they have scaled
to hundreds of billions of parameters (e.g. GPT�3 [20], PaLM [22]),
large FMs have demonstrated surprising emergent behaviors and
good zero-shot generalization to new tasks (i.e. no task-speci�c
�netuning) on domains vastly di�erent from the data they were pre-
trained on [22]. These large FMs are often autoregressive language
models (e.g. GPT�3 and PaLM) that are trained to predict the next
word in large text corpora and can be adapted to new tasks given a
simple natural language description of the task (see Figure 1). These
breakthrough capabilities have led to a race for building bigger and
better models, and innovations continue to push the boundaries of
what large FMs can do on a variety of hard language tasks.

A natural question that arises is whether these advances can
bene�t hard classical data tasks (e.g. data cleaning and integration).
While it is clear that FMs bene�t text-intensive tasks, it is not clear
whether these models can be applied to data tasks over structured
data. The symbols commonly found in structured data (e.g. dates,
numbers, alphanumeric codes) are less frequent in natural language
text so it is unclear that FMs possess the ability to reason over them.
Moreover, since FMs are trained to predict the next word, it is non-
obvious that they can work out-of-the-box on complex data tasks.
This paper explores the aforementioned question and introduces
a new research vision for leveraging FMs for data management,
focusing on data cleaning and integration tasks—two keys steps in
data-driven enterprise pipelines.

Recently, a large body of research has applied machine learn-
ing (ML) [49] and deep learning (DL) [57, 75] methods—namely

Title Price

Macbook Pro $1,999.00

Table 1
Title Price

Macbook Air $899.00

Table 2

“Product A is Title: Macbook Pro Price: $1,999
Product B is Title: Macbook Air Price: $899
Are product A and product B the same?”

Foundation Model

No

Figure 1: A large FM can address an entity matching task
using prompting. Rows are serialized into text and passed to
the FM with the question “Are products A and B the same?”.
The FM then generates a string “Yes” or “No” as the answer.

pretrained languagemodels (PLMs) like BERT [32]—to semantically-
complex data tasks. However, these approaches still require a sig-
ni�cant amount of engineering e�ort as they rely on:
• Task-speci�c architectures: Data cleaning and integration en-
capsulatemany di�erent tasks such as entitymatching [78], schema
matching [93], and error detection [41]. Existing approaches,
whether they are rule-, ML- or DL-based, vary greatly from one
task to the other, often with complex, task-speci�c architectures.
For instance, adapting BERT to data tasks requires architectural
changes and �netuning the entire model for each task. This leads
to siloed and hard-to-maintain systems.

• Hard-codedknowledge: Data tasks often rely on domain knowl-
edge (e.g. understanding the relationship between a city and its
zip code for data cleaning constraints) and commonsense reason-
ing. These are usually hard-coded with human-engineered rules
or external knowledge bases [24, 85]. Consequently, systems can
be brittle and fail to generalize to a diverse set of domains.

• Labeled data: ML- andDL-based solutions require copious amounts
of hand-labeled data [9]. For instance, PLMs that have achieved
state-of-the-art (SoTA) results on data tasks (e.g. Ditto [38]) re-
quire a signi�cant amount of task-speci�c labeled data and �ne-
tuning to achieve good performance. Labeling data for each task
is engineering intensive and adds to the di�culty of maintaining
data cleaning and integration systems.
Excitingly, FMs display several useful properties that make them

an appealing choice compared to traditional approaches:
• Task-agnostic architecture: As a result of their natural lan-
guage interface, FMs can be applied to a wide-range of tasks. For
instance, Figure 1 shows how an entity matching task—which
requires identifying whether two table entries refer to the same
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ABSTRACT
Foundation Models (FMs) are models trained on large corpora of
data that, at very large scale, can generalize to new tasks without
any task-speci�c �netuning. As these models continue to grow in
size, innovations continue to push the boundaries of what these
models can do on language and image tasks. This paper aims to
understand an underexplored area of FMs: classical data tasks like
cleaning and integration. As a proof-of-concept, we cast �ve data
cleaning and integration tasks as prompting tasks and evaluate the
performance of FMs on these tasks. We �nd that large FMs general-
ize and achieve SoTA performance on data cleaning and integration
tasks, even though they are not trained for these data tasks.We iden-
tify speci�c research challenges and opportunities that these models
present, including challenges with private and domain speci�c data,
and opportunities to make data management systems more acces-
sible to non-experts. We make our code and experiments publicly
available at: https://github.com/HazyResearch/fm_data_tasks.

1 INTRODUCTION
FoundationModels (FMs) [19] are models trained on broad data that
can be adapted to a wide range of downstream tasks. These models
have achieved substantial gains across many semantically challeng-
ing tasks such as question answering [20], knowledge base con-
struction [80], and information retrieval [39]. As they have scaled
to hundreds of billions of parameters (e.g. GPT�3 [20], PaLM [22]),
large FMs have demonstrated surprising emergent behaviors and
good zero-shot generalization to new tasks (i.e. no task-speci�c
�netuning) on domains vastly di�erent from the data they were pre-
trained on [22]. These large FMs are often autoregressive language
models (e.g. GPT�3 and PaLM) that are trained to predict the next
word in large text corpora and can be adapted to new tasks given a
simple natural language description of the task (see Figure 1). These
breakthrough capabilities have led to a race for building bigger and
better models, and innovations continue to push the boundaries of
what large FMs can do on a variety of hard language tasks.

A natural question that arises is whether these advances can
bene�t hard classical data tasks (e.g. data cleaning and integration).
While it is clear that FMs bene�t text-intensive tasks, it is not clear
whether these models can be applied to data tasks over structured
data. The symbols commonly found in structured data (e.g. dates,
numbers, alphanumeric codes) are less frequent in natural language
text so it is unclear that FMs possess the ability to reason over them.
Moreover, since FMs are trained to predict the next word, it is non-
obvious that they can work out-of-the-box on complex data tasks.
This paper explores the aforementioned question and introduces
a new research vision for leveraging FMs for data management,
focusing on data cleaning and integration tasks—two keys steps in
data-driven enterprise pipelines.

Recently, a large body of research has applied machine learn-
ing (ML) [49] and deep learning (DL) [57, 75] methods—namely
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“Product A is Title: Macbook Pro Price: $1,999
Product B is Title: Macbook Air Price: $899
Are product A and product B the same?”

Foundation Model

No

Figure 1: A large FM can address an entity matching task
using prompting. Rows are serialized into text and passed to
the FM with the question “Are products A and B the same?”.
The FM then generates a string “Yes” or “No” as the answer.

pretrained languagemodels (PLMs) like BERT [32]—to semantically-
complex data tasks. However, these approaches still require a sig-
ni�cant amount of engineering e�ort as they rely on:
• Task-speci�c architectures: Data cleaning and integration en-
capsulatemany di�erent tasks such as entitymatching [78], schema
matching [93], and error detection [41]. Existing approaches,
whether they are rule-, ML- or DL-based, vary greatly from one
task to the other, often with complex, task-speci�c architectures.
For instance, adapting BERT to data tasks requires architectural
changes and �netuning the entire model for each task. This leads
to siloed and hard-to-maintain systems.

• Hard-codedknowledge: Data tasks often rely on domain knowl-
edge (e.g. understanding the relationship between a city and its
zip code for data cleaning constraints) and commonsense reason-
ing. These are usually hard-coded with human-engineered rules
or external knowledge bases [24, 85]. Consequently, systems can
be brittle and fail to generalize to a diverse set of domains.

• Labeled data: ML- andDL-based solutions require copious amounts
of hand-labeled data [9]. For instance, PLMs that have achieved
state-of-the-art (SoTA) results on data tasks (e.g. Ditto [38]) re-
quire a signi�cant amount of task-speci�c labeled data and �ne-
tuning to achieve good performance. Labeling data for each task
is engineering intensive and adds to the di�culty of maintaining
data cleaning and integration systems.
Excitingly, FMs display several useful properties that make them

an appealing choice compared to traditional approaches:
• Task-agnostic architecture: As a result of their natural lan-
guage interface, FMs can be applied to a wide-range of tasks. For
instance, Figure 1 shows how an entity matching task—which
requires identifying whether two table entries refer to the same
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entity—can be cast as a prompting task. This unifying interface
eliminates the need for siloed architectures, in contrast to exist-
ing learned approaches where architectures need to be carefully
crafted for each task (e.g. task-speci�c classi�cation layer).

• Encoded knowledge: Because FMs are trained on large, generic
corpora of data, they contain knowledge about an extensive set
of common entities, and thus do not rely on human-engineered
rules to acquire knowledge [83].

• Limited to no labeled data: FMs can be applied to a breadth of
tasks with little to no labeled data (e.g. few-shot and zero-shot).
When a FM needs to be �ne-tuned, it typically needs dramatically
less labeled data to achieve competitive results [46].

Our goal is to better understand if large FMs can be applied
to data integration and cleaning tasks. We study the behavior of
GPT�3—an early and promising FM. While GPT�3 is already a high
quality model, we expect the signi�cant investment in FMs from
both academia and industry to lead to more performant and scalable
FMs over time. Like many other communities, the data management
community stands to bene�t from these trends. As such, we aim
to understand the advantages and limitations of FMs on data tasks,
by focusing on three key questions.

Howwell do large FMs transfer to data tasks? To answer this,
we cast several data tasks as natural language generation tasks (Sec-
tion 3) and explore whether a single FM can generalize well to these
tasks. In Section 4.2, we quantify the zero- and few-shot perfor-
mance of FMs on �ve enterprise data tasks: entity matching, error
detection, schema matching, data transformation, and data impu-
tation. We �nd that the largest GPT�3 variant (175B parameters)
outperforms SoTA ML-and DL-based approaches on these tasks
with few examples. This is particularly surprising since prior ap-
proaches are fully-�netuned on task-speci�c labeled data for these
tasks, while GPT�3-175B is simply pretrained to generate text.

What are the caveats in applying FMs to data tasks? In Sec-
tion 4.3, we unpack the few-shot “prompt tuning” process—serializing
tabular data to text, casting data tasks as text generation tasks and
constructing demonstrative task examples—for applying FMs to
data tasks. We quantify the e�ects of prompt formatting varia-
tions on performance and the di�erences between manually and
randomly selecting task examples. We �nd that FMs are brittle to
di�erences in prompt formatting and that performance improves
when prompts are manually selected versus randomly selected.

What opportunities do FMs present for data tasks andwhat
are the relevant research challenges? Finally, in Section 5, we dis-
cuss the potential challenges and related research questions with
using FMs in data management pipelines. We discuss the forthcom-
ing shift in how ML systems are built, challenges around updating
FM knowledge, and opportunities and considerations pertaining to
private, temporal and local data.

We hope that our preliminary exploration will encourage the
data management community to explore the e�ectiveness of FMs
for other data tasks and develop techniques to overcome the short-
comings of FMs in this setting.

2 BACKGROUND
We �rst give some background on the di�erent data tasks considered
in this paper and then provide a brief review of FMs.

Yes Yes

Foundation Model

Zero-shot Few-shot

Task Output

Foundation Model

Task Input

Task Description

Task 
Demonstrations

Country: England, City: Kyoto?

Is there an error in Country? 

Country: USA, City: Miami? No
Country: Spain, City: Paris? Yes 

Country: England, City: Kyoto?

Is there an error in Country? 

Figure 2: Di�erent ways to use FMs with “in-context” learn-
ing [20] on an error detection task. For zero-shot (left), the
prompt is the task description and the example to complete.
For few-shot (right), the prompt adds demonstrations of
how to complete the task.

2.1 Problem Setup
We focus on entity matching (EM), error detection (ED), and data
imputation (DI) and describe the setup for these tasks. We denote
⇡ , a structured dataset with = entries, such that each entry is repre-
sented by a collection of< attribute value pairs: for entry 48 2 ⇡ we
have 48 = {48, 9 }1 9< where for attribute 9 , 48, 9 = {attr9 , val9 }.

Entity Matching The goal of EM is to match entities (real-world
objects like people, places and things) across di�erent datasets. For-
mally, given two structured datasets (⇡,⇡ 0) and pairs of entries
4, 4 0 2 ⇡ ⇥⇡ 0, the goal is to predict whether these entries represent
the same entity or not. This problem is usually solved as a classi�-
cation problem, and real-world EM systems are often preceded by
blocking heuristics which are used to remove obvious non-matches.

EM has been extensively studied over the past decade (see [78]
for a survey) and methods broadly fall into three categories: rule-
based, crowd-based [36, 97] and ML/DL-based [49, 75]. Recently,
methods relying on PLMs [57] have become SoTA for this task.

ErrorDetection ED is an important step in data cleaning pipelines.
Given an entry 4 , the goal is to detect attributes 9 where val9 has
an error. The task is framed as a classi�cation problem where the
goal is to predict if val9 is correct for a given 4 .

ED has been studied extensively in both academic and indus-
trial settings [7]. There are a number of successful commercial
o�erings including Trifacta [6] and Tamr [5]. Traditionally, ED
systems have been heavily reliant on rule-based algorithms which
enforce data constraints through functional dependencies or knowl-
edge bases [23, 24, 26]. Additionally, there are statistical-based
approaches such as pattern enforcement [24, 45], outlier detec-
tion [28], and record deduplication [90] algorithms. Recent e�orts
have developed SoTA ML models for ED [41].

Data Imputation DI is a critical step for repairing dirty data
sources. Given an entry 4 withmissing attribute values {attr9 , NULL},
the goal of DI is to infer the missing values. The full range of plau-
sible values for the missing value is not known apriori.
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ABSTRACT
Foundation Models (FMs) are models trained on large corpora of
data that, at very large scale, can generalize to new tasks without
any task-speci�c �netuning. As these models continue to grow in
size, innovations continue to push the boundaries of what these
models can do on language and image tasks. This paper aims to
understand an underexplored area of FMs: classical data tasks like
cleaning and integration. As a proof-of-concept, we cast �ve data
cleaning and integration tasks as prompting tasks and evaluate the
performance of FMs on these tasks. We �nd that large FMs general-
ize and achieve SoTA performance on data cleaning and integration
tasks, even though they are not trained for these data tasks.We iden-
tify speci�c research challenges and opportunities that these models
present, including challenges with private and domain speci�c data,
and opportunities to make data management systems more acces-
sible to non-experts. We make our code and experiments publicly
available at: https://github.com/HazyResearch/fm_data_tasks.

1 INTRODUCTION
FoundationModels (FMs) [19] are models trained on broad data that
can be adapted to a wide range of downstream tasks. These models
have achieved substantial gains across many semantically challeng-
ing tasks such as question answering [20], knowledge base con-
struction [80], and information retrieval [39]. As they have scaled
to hundreds of billions of parameters (e.g. GPT�3 [20], PaLM [22]),
large FMs have demonstrated surprising emergent behaviors and
good zero-shot generalization to new tasks (i.e. no task-speci�c
�netuning) on domains vastly di�erent from the data they were pre-
trained on [22]. These large FMs are often autoregressive language
models (e.g. GPT�3 and PaLM) that are trained to predict the next
word in large text corpora and can be adapted to new tasks given a
simple natural language description of the task (see Figure 1). These
breakthrough capabilities have led to a race for building bigger and
better models, and innovations continue to push the boundaries of
what large FMs can do on a variety of hard language tasks.

A natural question that arises is whether these advances can
bene�t hard classical data tasks (e.g. data cleaning and integration).
While it is clear that FMs bene�t text-intensive tasks, it is not clear
whether these models can be applied to data tasks over structured
data. The symbols commonly found in structured data (e.g. dates,
numbers, alphanumeric codes) are less frequent in natural language
text so it is unclear that FMs possess the ability to reason over them.
Moreover, since FMs are trained to predict the next word, it is non-
obvious that they can work out-of-the-box on complex data tasks.
This paper explores the aforementioned question and introduces
a new research vision for leveraging FMs for data management,
focusing on data cleaning and integration tasks—two keys steps in
data-driven enterprise pipelines.

Recently, a large body of research has applied machine learn-
ing (ML) [49] and deep learning (DL) [57, 75] methods—namely
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Figure 1: A large FM can address an entity matching task
using prompting. Rows are serialized into text and passed to
the FM with the question “Are products A and B the same?”.
The FM then generates a string “Yes” or “No” as the answer.

pretrained languagemodels (PLMs) like BERT [32]—to semantically-
complex data tasks. However, these approaches still require a sig-
ni�cant amount of engineering e�ort as they rely on:
• Task-speci�c architectures: Data cleaning and integration en-
capsulatemany di�erent tasks such as entitymatching [78], schema
matching [93], and error detection [41]. Existing approaches,
whether they are rule-, ML- or DL-based, vary greatly from one
task to the other, often with complex, task-speci�c architectures.
For instance, adapting BERT to data tasks requires architectural
changes and �netuning the entire model for each task. This leads
to siloed and hard-to-maintain systems.

• Hard-codedknowledge: Data tasks often rely on domain knowl-
edge (e.g. understanding the relationship between a city and its
zip code for data cleaning constraints) and commonsense reason-
ing. These are usually hard-coded with human-engineered rules
or external knowledge bases [24, 85]. Consequently, systems can
be brittle and fail to generalize to a diverse set of domains.

• Labeled data: ML- andDL-based solutions require copious amounts
of hand-labeled data [9]. For instance, PLMs that have achieved
state-of-the-art (SoTA) results on data tasks (e.g. Ditto [38]) re-
quire a signi�cant amount of task-speci�c labeled data and �ne-
tuning to achieve good performance. Labeling data for each task
is engineering intensive and adds to the di�culty of maintaining
data cleaning and integration systems.
Excitingly, FMs display several useful properties that make them

an appealing choice compared to traditional approaches:
• Task-agnostic architecture: As a result of their natural lan-
guage interface, FMs can be applied to a wide-range of tasks. For
instance, Figure 1 shows how an entity matching task—which
requires identifying whether two table entries refer to the same
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Abstract

GPT-3 can perform numerous tasks when pro-
vided a natural language prompt that contains a
few training examples. We show that this type of
few-shot learning can be unstable: the choice of
prompt format, training examples, and even the
order of the training examples can cause accuracy
to vary from near chance to near state-of-the-art.
We demonstrate that this instability arises from
the bias of language models towards predicting
certain answers, e.g., those that are placed near
the end of the prompt or are common in the pre-
training data. To mitigate this, we first estimate
the model’s bias towards each answer by asking
for its prediction when given the training prompt
and a content-free test input such as “N/A”. We
then fit calibration parameters that cause the pre-
diction for this input to be uniform across answers.
On a diverse set of tasks, this contextual calibra-
tion procedure substantially improves GPT-3 and
GPT-2’s average accuracy (up to 30.0% absolute)
and reduces variance across different choices of
the prompt.

1. Introduction

Few-shot learning—the ability to learn tasks with limited
examples—is an important aspect of intelligence (Lake et al.,
2015; Yogatama et al., 2019). Recent work shows that large
neural language models can perform few-shot learning with-
out finetuning (Radford et al., 2019; Brown et al., 2020).
Specifically, GPT-3 (Brown et al., 2020) can perform nu-
merous tasks when provided a few examples in a natural
language prompt. For example, to perform sentiment analy-
sis one can condition GPT-3 on a prompt such as:

Input: Subpar acting. Sentiment: Negative
Input: Beautiful film. Sentiment: Positive
Input: Amazing. Sentiment:

*Equal contribution 1UC Berkeley 2University of Mary-
land 3UC Irvine. Correspondence to: Eric Wallace <ericwal-
lace@berkeley.edu>.

where the first two lines correspond to two training examples
and the last line is a test example. To make predictions, the
model predicts whether the subsequent token is more likely
to be the word “Positive” or “Negative”.

This style of few-shot “in-context” learning is interesting
because it shows that the model can learn without parameter
updates. And, more importantly, it has numerous practi-
cal advantages over the now-standard approach of finetun-
ing (Radford et al., 2018; Devlin et al., 2019). First, it allows
practitioners to “rapidly prototype” NLP models: changing
the prompt immediately leads to a new model. Second, it
provides a fully natural language interface to a machine
learning model, which allows users—even those without
technical expertise—to create NLP systems. Finally, since
in-context learning reuses the same model for each task, it
reduces memory requirements and system complexity when
serving many different tasks.

However, despite these promises, we show that GPT-3’s
accuracy can be highly unstable across different prompts
(Section 3). A prompt contains three components: a format,
a set of training examples, and a permutation (ordering) for
those examples. We show that different choices for these
factors can lead to highly different accuracies, e.g., changing
the permutation of the training examples in a sentiment
analysis prompt can change accuracy from near chance
(54%) to near state-of-the-art (93%). This instability implies
that GPT-3 users, who typically design prompts manually,
cannot expect to consistently obtain good accuracy.

We next analyze what causes this instability. We identify
three pitfalls of language models that lead them to be bi-
ased toward certain answers during few-shot learning. In
particular, they suffer from majority label bias, recency bias,
and common token bias (Section 4). The majority label and
recency biases lead the model to predict training answers
that appear frequently or near the end of the prompt. For
example, a prompt that ends with a Negative training ex-
ample may cause a bias towards the Negative class. On
the other hand, the common token bias leads the model to
prefer answers that are frequent in its pre-training data, e.g.,
it prefers “United States” over “Saint Lucia”, which is likely
suboptimal for the task of interest.

We identify that these biases typically result in a shift in
the output distribution of the model. We can thus coun-
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Abstract

GPT-3 can perform numerous tasks when pro-
vided a natural language prompt that contains a
few training examples. We show that this type of
few-shot learning can be unstable: the choice of
prompt format, training examples, and even the
order of the training examples can cause accuracy
to vary from near chance to near state-of-the-art.
We demonstrate that this instability arises from
the bias of language models towards predicting
certain answers, e.g., those that are placed near
the end of the prompt or are common in the pre-
training data. To mitigate this, we first estimate
the model’s bias towards each answer by asking
for its prediction when given the training prompt
and a content-free test input such as “N/A”. We
then fit calibration parameters that cause the pre-
diction for this input to be uniform across answers.
On a diverse set of tasks, this contextual calibra-
tion procedure substantially improves GPT-3 and
GPT-2’s average accuracy (up to 30.0% absolute)
and reduces variance across different choices of
the prompt.

1. Introduction

Few-shot learning—the ability to learn tasks with limited
examples—is an important aspect of intelligence (Lake et al.,
2015; Yogatama et al., 2019). Recent work shows that large
neural language models can perform few-shot learning with-
out finetuning (Radford et al., 2019; Brown et al., 2020).
Specifically, GPT-3 (Brown et al., 2020) can perform nu-
merous tasks when provided a few examples in a natural
language prompt. For example, to perform sentiment analy-
sis one can condition GPT-3 on a prompt such as:

Input: Subpar acting. Sentiment: Negative
Input: Beautiful film. Sentiment: Positive
Input: Amazing. Sentiment:

*Equal contribution 1UC Berkeley 2University of Mary-
land 3UC Irvine. Correspondence to: Eric Wallace <ericwal-
lace@berkeley.edu>.

where the first two lines correspond to two training examples
and the last line is a test example. To make predictions, the
model predicts whether the subsequent token is more likely
to be the word “Positive” or “Negative”.

This style of few-shot “in-context” learning is interesting
because it shows that the model can learn without parameter
updates. And, more importantly, it has numerous practi-
cal advantages over the now-standard approach of finetun-
ing (Radford et al., 2018; Devlin et al., 2019). First, it allows
practitioners to “rapidly prototype” NLP models: changing
the prompt immediately leads to a new model. Second, it
provides a fully natural language interface to a machine
learning model, which allows users—even those without
technical expertise—to create NLP systems. Finally, since
in-context learning reuses the same model for each task, it
reduces memory requirements and system complexity when
serving many different tasks.

However, despite these promises, we show that GPT-3’s
accuracy can be highly unstable across different prompts
(Section 3). A prompt contains three components: a format,
a set of training examples, and a permutation (ordering) for
those examples. We show that different choices for these
factors can lead to highly different accuracies, e.g., changing
the permutation of the training examples in a sentiment
analysis prompt can change accuracy from near chance
(54%) to near state-of-the-art (93%). This instability implies
that GPT-3 users, who typically design prompts manually,
cannot expect to consistently obtain good accuracy.

We next analyze what causes this instability. We identify
three pitfalls of language models that lead them to be bi-
ased toward certain answers during few-shot learning. In
particular, they suffer from majority label bias, recency bias,
and common token bias (Section 4). The majority label and
recency biases lead the model to predict training answers
that appear frequently or near the end of the prompt. For
example, a prompt that ends with a Negative training ex-
ample may cause a bias towards the Negative class. On
the other hand, the common token bias leads the model to
prefer answers that are frequent in its pre-training data, e.g.,
it prefers “United States” over “Saint Lucia”, which is likely
suboptimal for the task of interest.

We identify that these biases typically result in a shift in
the output distribution of the model. We can thus coun-
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PART I: Foundation Models: In-context Learning 
for Data Preparation Single Tasks

• Early successes: entity matching, error detection, string transformation 

• Limitations 

• Prompt-sensitive 

• Dataset-sensitive 

• Research Opportunities
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• Dataset-sensitive 

• Not reliable 

• Research Opportunities



ChatGPT

• WHO says COVID-19 is no longer a  
global health emergency

• Who says COVID-19 is no longer a  
global health emergency

Example from Faisal Farooq



ChatGPT

• WHO says COVID-19 is no longer a  
global health emergency

• Who says COVID-19 is no longer a  
global health emergency

Example from Faisal Farooq

Exact same answer



PART I: Foundation Models: In-context Learning 
for Data Preparation Single Tasks
• Early successes: entity matching, error detection, string transformation 

• Limitations 

• Prompt-sensitive 

• Dataset-sensitive 

• Not reliable 

• Research Opportunities

• Not up-to-date 

• Not complete 

• Poor reasoning (tabular data) 

• Not explainable



PART I: Foundation Models: In-context Learning 
for Data Preparation Single Tasks

• Early successes: entity matching, error detection, string transformation 

• Limitations 

• Research Opportunities 

• Table learning 

• Routing-based methods with modular architectures 

• Retrieval-based models



Table Learning



Table Learning

VLDB 2021

VLDB 2021



Table Learning

VLDB 2021

VLDB 2021

VLDB 2022 Tutorial



Table Learning (e.g. RPT)
Name Expertise City

Michael Jordan Machine Learning Berkeley
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• Token Embedding

• RPT Architecture
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A Modular, Neuro-Symbolic Architecture

In addition to these shortcomings, there is another inherent problem with the
traditional approach to deploying LMs:

4. Model explosion. Today’s LM’s zero-shot performance trails that of fine-tuned
models. One can fine-tune the LM to a specific task, but then lose versatil-
ity. Contemporary efforts to mitigate the problem focus on training a huge
LM jointly on many sets of curated NLP tasks in a massive multi-task setting
(several leading studies reaching 100+ tasks) [6, 7, 15, 16]. These formidable
efforts are effective; the resulting models exhibit versatility and high perfor-
mance when encountering inputs resembling those of the curated tasks. But
the performance of these models on tasks that are not close enough to those
included in the curated tasks can significantly deteriorate (for example, per-
plexity degrades significantly). It is not practical to fine-tune and serve multi-
ple large models. Nor can one further tune a multi-task-trained LM [6, 7, 15,
16] on a new task that hadn’t been covered in its training; due to catastrophic
forgetting, adding the new task necessitates retraining on the entire task set.
Given the cost of training such models [17–19], this is clearly infeasible to do
repeatedly.

Despite all these shortcomings, large language models are an essential backbone
of any future AI system. So the question is how to have our cake and eat it too,
enjoying the benefits of self-supervised deep language models without suffering these
drawbacks. The solution we offer takes the form of a flexible architecture dubbed
the Modular Reasoning, Knowledge and Language (MRKL, pronounced “miracle”)
system, whose high-level design is depicted below.

A

3

MRKL (Modular Reasoning, Knowledge and Language)
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Non Retrieval-based Data Cleaning
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Name Age Gender BT
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Spec

health.csv
Name Age Gender BT

t1 John 54 NULL A

t2 Alice 36 F NULL

t3 Peter 38 M AB

t4 Calvin 17 NULL O

t5 Paul 73 M NULL

Tuple-based Indexer top-n Reranker

top-k (k << n)

Reasoner

Data Lake

Elastic 
search Faiss

ColBERT 
CrossBERT

ChatGPT BERT

Name Age Gender

t1 John 54 NULL

Name Age Gender BT

t5 Paul 73 M NULL

Name Age Gender BT

t2 Alice 36 F NULL

Name Age Gender

t4 Calvin 17 NULL

Name Age Gender BT

t1 John 54 M

t2 Alice 36 F B

t4 Calvin 17 M

t5 Paul 73 M A

t2, t5

Name Age Gender

t1 John 54 NULL

Name Age Gender BT

t2 Alice 36 F NULL

Name Age Gender

t4 Calvin 17 NULL

Name Age Gender BT

t5 Alice 36 F NULL

+

+

Tuple-based Cleaning

t1, t2, t4, t5

Input Output

Retrieval-based

Retrieval-based Data Cleaning • Not reliable - retrieved data 
• Sensitive data - local models



Conclusions

• Positioning 

• Foundation models cannot replace humans for data preparation 

• Treat/tune foundation models as your thought partners 

• Promising directions 

• Adapting foundation models for specific tasks (discussed next) 

• Enhancing foundation models with better reasoning (e.g., modularized design) 

• Enhancing foundation models with better explainability (e.g., retrieval-based)
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