Orchestrating Data
Preparation Pipelines



Orchestrating Data Preparation Pipelines

Discovery

Tuple search Extract Entity resolution Missing values Feature engineering
Column search Transform Deduplication Outdated Feature selection
Table search Load 8 Schema matching Formatting

Hl Al

Human Intelligence Artificial Intelligence




Outline

O Overview
* Motivation
* Challenges
 Manual Pipeline Orchestration
« Automatic Pipeline Generation
 Human-in-the-loop Pipeline Generation

OOpen Problems



Outline

[0 Overview
P « Motivation



Motivation

[IData Preparation Pipeline

»Requires a series steps
» data wrangling, data cleaning, feature engineering...

‘ Join imputation PCA ‘

Original Data Data Preparation Pipeline Prepared Data

[1 Limitations:
> Rely on experts
» Time-consuming
»Hard to discover the optimal solution 5



Challenges

ClLarge and complex search space

» Each step can be implemented by different algorithms
» Complex dependencies among operators

* Merge Join * Mean and Median
* InnerlJoin * Dropping

* Nested Loops Join e Statistics-based

* Hash Join * ML-based

\ —

Original Data Data Preparation Pipeline Prepared Data




C1Domain- or even dataset-specific
»Dependency of downstream tasks

Challenges

»Dependency of underlying datasets

=

Original Data

==

Original Data

imputation

Join

PCA

Pipeline A

Which one is better?

Join

imputation

PCA

Pipeline B

- 5

Prepared Data

- 5

Prepared Data



Three Types of Data Preparation Pipelines

Expensive

Manual Pipeline Orchestration

v Human-in-the-loop Pipeline Generation

Human Effort

IR
Automatic Pipeline Generation

Cheap



Outline

O Overview
* Motivation
* Challenges
©? - Manual Pipeline Orchestration



An Example

OHand-written script

» UDFs
» Domain Knowledges

2. Feature Augmentation

3. Removing Irrelevance
Features

6. Train-Test Splitting

W 0o N OV B W N

N NN N NNPRFE R R
Vi B W N R O WVWOWWNOOWUVEAE WNREO®

df = pd.read_csv("Kagglev2-May-2016.csv")

df

df[(df.Age >= 0) & (df.Age <= 100)]

1. Dealing Outlier

df['ScheduledDay" ]
df[ "AppointmentDay’
df[ "AwaitingTime']
df["AwaitingTime" ]

Il

pd.to_datetime(df['ScheduledDay’])

= pd.to_datetime(df[ 'AppointmentDay’])
df["AppointmentDay"].sub(df["ScheduledDay"], axis=0)
(df["AwaitingTime"] / np.timedelta64(1, 'D')).abs()

df.drop([ 'PatientId’, 'AppointmentID', 'ScheduledDay’,

"Handcap', 'AppointmentDay', 'Neighbourhood'’
|, axis=1, inplace=True)

X = df.drop("No-show",axis=1)

y = df["No-show"]

X _trainl = pd.get dummies(X)

y.replace("vyes", 1,inplace=True)

y-replace("No”, o,inplace=True) | 4 Encoding

scaler = StandardScaler().fit(X traini)
rescaledx2 = scaler.transform(X_trainl)

5.Scaling

X train, X test, y train, y test = train_test split(
rescaledx2, y, train_size=0.8, test size=1-0.8, random state=0)

10



Manual Pipeline Analysis

OOperator Level

» Data Cleaning

> Encoder

> Scaler

> Feature Transformation
» Feature Selection

dropna
fillna .
Simplelmputer B Data CleanlngJ

get_ dummies
LabelEncoder
OneHotEncoder

Encoder

StandardScaler
MinMaxScaler
RobustScaler
QuantileTransformer
Normalizer
MaxAbsScaler
PowerTransformer
KBinsDiscretizer B Scaler

PCA

PolynomialFeatures

IncrementalPCA

TruncatedSVD

KernelPCA
RandomTreesEmbedding Feature Tansformation

SelectKBest

RFE

SelectPercentile

VarianceThreshold

SelectFpr
SelectFwe I Feature Selection

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Ratio of Usage
11

Analysis based on 800 notebooks from Kaggle



Number of Operators

Manual Pipeline Analysis

OPipeline Level

» #-Operators vs. #Notebooks

Length:0 451
Length:1 293
Length:2 43
Length:3 |6
Length:4 |1
0 125 250 375 500

Number of Notebooks

@® Length:0 @ Length:1
Length:3 @ Length:4

@® Length:2

12



Manual Pipeline Analysis

OPipeline Level

» Performance after adding operators

Better
" 37.38%

Better

Better
" 30%

" 47.22%

Add Feature
Selection

Add Scaler Add Feature

Transformation

Worse ,

Worse
52.78% -

70% Worse

62.62%

13



Take-away
OPros

» These pipelines are very flexible.

» These pipelines can be easily injected with domain knowledge
and user experiences.

ClCons

» Human orchestrated pipelines may have “blind spots”.

Can we automatically generate the pipeline?
- Reduce human effort {,
- Improve the performance T

14



Outline

O Overview

* Motivation

* Challenges

 Manual Pipeline Orchestration
> - Automatic Pipeline Generation

15



Automatic Pipeline Generation

'\m —_——— ..

Machine
-

Algorithms
Candidate Pipelines

Search Space

16



Automatic Pipeline Generation

Auto-Weka

Bayesian
optimization and
meta-learning

Auto-Sklearn

TensorOBOE

Automatic
Pipeline
Generation

Genetic programming

AplineMeadow

TPOT

Reinforcement
learning

Learn2Clean

DeepLine

ATENA

17



Automatic Pipeline Generation

Auto-Weka

Bayesian
optimization and
meta-learning

Auto-Sklearn

TensorOBOE

Automatic
Pipeline
Generation

Genetic programming

AplineMeadow

TPOT

Reinforcement
learning

Learn2Clean

DeepLine

ATENA

18



Auto-WEKA

O Problem definition:
» CASH: Combined Algorithm Selection and Hyperparameter optimization

[0 Key Idea:
» Bayesian optimization
> p(c|A)

Algorithm 1 SMBO

initialise model Mp; H < 0
while time budget for optimization has not been ex-
hausted do

A « candidate configuration from My,

Compute ¢ = L(AA’ Diiz)iinﬂ D\(/;)lid)
H+—HU{(A )}
Update My, given H

end while

return A\ from H with minimal ¢

DN =

[1] Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms 19



Auto-Sklearn

[ Key Idea
» Meta Learning for coarse-grained pipeline selection
» Bayesian Optimization for fine-grained pipeline generation

Meta -
Learning
> >
M@@

Target ML Task Most similar K tasks Candidate Pipelines

Bayesian Optimization
Techniques

/O

Best Pipeline and Hyperparameters

[2] Matthias Feurer et al. Efficient and Robust Automated Machine Learning. NIPS 2015. 20



TensorOBOE

OO0 TensorOBOE: a new structured model based on tensor
decomposition for AutoML pipeline selection

[ Key Idea

» Use low rank tensor decomposition as a surrogate model
for efficient pipeline search

» Use meta-learning to optimize an error matrix, which can
be decomposed as 6 matrices

rl U

X ,..
_ 1 G . 3
X | )7 22
n n
njy
112 ’72 U2
)

21
[3] C. Yang el al. AutoML Pipeline Selection: Efficiently Navigating the Combinatorial Space. SIGKDD 2020



Alpine Meadow

[ Key Idea

» Rule-based optimization, can be combined with multi-armed
bandits, Bayesian optimization and meta-learning

(1) 2) 3) ()
Meta-Learning via Pipeline 1
History I Plpelme Arm 1
T, Pipeline 2 74. 38%
IH,,'.
i I I
Pineline 3 J Plpellne Arm 2
Ipeline — 47. 25%
I
Pipeline N Pi ellne Arm N
I I %. 12%
i (5)
(6) Data Augmentatlon Update Search Space Model

22
[4] Z. Shang. et al.Democratizing Data Science through Interactive Curation of ML Pipelines. SIGMOD 2019



Automatic Pipeline Generation

Auto-Weka

Bayesian
optimization and
meta-learning

Auto-Sklearn

TensorOBOE

Automatic
Pipeline
Generation

Genetic programming

AplineMeadow

TPOT

Reinforcement
learning

Learn2Clean

DeepLine

ATENA

23



TPOT

[0 Key Idea
O A tree-based representation model of data preparation
pipelines
[ optimize the pipelines using genetic programming

The final classification
is performed on the
final feature set

Pipeline operators

. modify the features
Entire Data Set

Multiple copies of the Combine Select k Logistic
data set can enter the Features Best Regression
pipeline for analysis Features

Polynomial
Features

Modified data set
flows through the
pipeline operators

Entire Data Set

Figure 1: An example tree-based pipeline from TPOT. Each circle corresponds to a machine
learning operator, and the arrows indicate the direction of the data flow. 24

[5] R. S. Olson el al. TPOT: A tree-based pipeline optimization tool for automating machine learning. AutoML@ICML 2016



TPOT

[0 Key Idea
O A tree-based representation model of data preparation
pipelines
[ optimize the pipelines using genetic programming

O Key Steps
» Step1: Random generate 100 pipelines.
» Step2: Select 20 best pipelines.

» Step3: Each of the top 20 selected pipelines produce
five copies (i.e., offspring) into the next generation’s
population

» Step4: Repeat this evaluate-select-crossover-mutate
process for 100 generations.

[5] R. S. Olson el al. TPOT: A tree-based pipeline optimization tool for automating machine learning. AutoML@ICML 2016



Automatic Pipeline Generation

| Auto-Weka

Bayesian Auto-Sklearn
- optimizationand | mav i
i y incur
meta-learning TensorOBOE high cost
—| AplineMeadow
Automatic
Pipeline — Genetic programming TPOT _
Generation

Learn2Clean

Reinforcement _
learning DeepLine

— ATENA

26



Reinforcement Learning
[OKey Idea

» Model Data Preparation as the Markov Decision Process
» RL predicts data preparation operator step-by-step

O0Goal

» The data prepared through this series of operations can
achieve the best results in machine learning tasks



Reinforcement Learning

O General Framework
» State: vector of dataset and pipeline;
» Action: a set of data preparation operations;
» Reward: ML evaluation result.

» Transition function: add an action (operation) to
pipeline and execute it to generate a new dataset.

Environment pipeline, dataset
—
- Eed |

o operation
-0

Data prep pipeline

evaluation score Policy function

28



Learn2Clean

O Aim at orchestrating data cleaning pipeline
» Decision strategy is optimized by Q-Learning

( Data Curation ) seatstate ) gualiw Per)
(Classification Metrics '

MR ) ( WR ) rs Outller detectlon Inconsistency

(
Dirty Data |(|("i.c ) (" ) (R )( LOF ) Ccdetecﬁor;c
== =)

=P transition Learn2Clean A

Figure 1: Learn2Clean Architecture

D .

( Preparation \ 4 Cleaning )
(" Normalization ) Imputation Deduplication )
(o ) (zs )’(MF )( mice ) (o) () -

& o1\ ) (mx o)

SN— | Feature Selection R Tl @

einforcement

[5] Laure Berti-Equille. Learn2Clean: Optimizing the Sequence of Tasks for Web Data Preparation. WWW 2019



Learn2Clean

[0 Key Idea
» Decision strategy is optimized by Q-Learning

» Learn2Clean uses a Q-value matrix to model the value
of selection for each state

\ Goal state
Normalization Feature \ flmputation\ ( Outlier Regression
Selection MICE ( LOF ) Fmax=100
< > LASSO
KNN IQR
L AN Y, MSE
. J
actions
state _ZS LC MICE KNN LOF IQR LASS_O
ZS -1 0 0 0 0 0 -1
LC -1 -1 0 0 -1 -1 -1
MICE 0 -1 -1 -1 0 0 100
KNN 0 -1 -1 -1 0 0 100
Rinice= |oF | o 0 0 0 1 4100
IQR 0 0 0 0 1 -1 100
LASSO | -1 -1 0 0 0 0 1]

Reward: r’ = B(Norm(s,qm)— Norm(s’,q.,))
30
[5] Laure Berti-Equille. Learn2Clean: Optimizing the Sequence of Tasks for Web Data Preparation. WWW 2019



DeeplLine

0 Goal:

» Automatic aeneration of end-to-end ML pipelines

Data Feature Feature Feature _— .
% . B : 5 Prediction Combiner
Preprocessing  Preprocessing Selection Engineering
3 4 3 3 g
( Robust Scaler Mutual Info XGBoost

_[1]

Selection [2]

Classifier [3]

//////

- —
Min Max \- RF Classifier
e lmpiuter (4] Scaler [5] \ \l 6] //
Dataset = —
One-Hot ®
.. Encoder [7]

Extra Trees

Classifier

[7, 5]

Extra Trees
Classifier
[7, 6]

Logistic
Regression

[7]

RF Classifier
[7 2]

BLANK

Gradient

Boosting
[7,4]

Model a pipeline as a grid of operation

[6] Y. Heffetz el al. DeepLine: AutoML Tool for Pipelines Generation using Deep Reinforcement Learning and Hierarchical Actions Filtering.

31



DeeplLine

O Goal:
» Automatic generation of end-to-end ML pipelines

[0 Key Idea

» DeepLine uses DQN to optimize the policy strategy of selecting
operation in each node of the grid.

» Agent: Hierarchical action-modeling approach for modelling

dynamic action spaces Enironment
Dat: Feat Feati Feat . )

Prepr:c:ssing Prepi?)cl:;zing Seel:cltlil;)ell Engeizel;:ing Eiediction Combiner
$ L L v 3 3

Hierarchical
Step

/ Robust Scaler Mutual Info XGBoost
[1] Selection [2] Classifier [3]

Imputer [4] Min Max T RF Classifier
Raw P Scaler [5] [ ——— ] /

6]
Dataset
.. Encoder [7]
Extra Trees Extra Trees Logistic RF Classifi Gradient
Classifier Classifier Regression [7335]] o BLANK Boosting
\_ [7,5] [7,6] [7] : (7.4] Y,
Pipeline -> A Grid of Operation 52

[6] Y. Heffetz el al. DeepLine: AutoML Tool for Pipelines Generation using Deep Reinforcement Learning and Hierarchical Actions Filtering.



ATENA

O Goal

» Automatically Generating Exploratory Data Analysis (EDA) Pipeline
O Key Idea

» Formulate the EDA process as the Markov Decision Process

» Deep reinforcement learning with domain-specific reward function

Display Observation Vector
Encoding d =(0.81,6,0,0,042,...)

|-' Interestingness -I -
' Reward T
Reward Generation |-: Coherency J t > ¥ ;a
Diversity
Environment DRL Agent
I Selected EDA Operation Action < Parameter Probabilities ‘
FILTER (‘Departure Delay’,*,“ON TIME”)  Encoding a,, =1{(0.1,0.3.,0.6),(0.2,0.1,0.5,0.2),...}

33
[7] O.El et al. Automatically Generating Data Exploration Sessions Using Deep Reinforcement Learning. SIGMOD 2020.



Take-away
OPros

» Automatic generation, blink and it’s done

» Lower the barriers to a good data preparation pipeline

CICons
» May be misled by blindly suggesting possibly good pipeline

» Hard to incorporate the user expertise

Can we involve users into the Auto-pipeline generation process?
- Relatively low human effort
- Inject the users’ feedback and expertise

34



Outline

O Overview
* Motivation
* Challenges
 Manual Pipeline Orchestration
« Automatic Pipeline Generation
’? * Human-in-the-loop Pipeline Generation



Human-in-the-loop Pipeline Generation

DORIAN

Recommendation-
based approaches

Auto-Suggest

Human-in-
the-loop
Pipeline

Generation

Auto-Pipeline

Combination-based
approaches

HAIPipe

Program synthesis
approaches

Copilot

ChatGPT

36



Human-in-the-loop Pipeline Generation

DORIAN

Recommendation-
based approaches

Auto-Suggest

Human-in-
the-loop
Pipeline

Generation

Auto-Pipeline

Combination-based
approaches

HAIPipe

Program synthesis
approaches

Copilot

ChatGPT

37



DORIAN

[0 Key Idea

» Offline: a database to store previously pipelines from different teams
» Online: suggest top-k pipelines based on user inputs

Database .'

Tasks —

Pipelines

Query: I Search
® Dataset a ™\
o DsTax NN
® Evaluation? Recommendation
® Pipeline? Engine

Ranked Pipeline - )
38

[8] Sergey Redyuk et al. DORIAN in action: Assisted Design of Data Science Pipelines. PVLDB 2022



Auto-Suggest

0 Goal

» Recommend Data Preparation Steps
O Key Steps
» Data Collection: Python Notebooks from Kaggle/OpenML/Github

» Pipeline Extractor:
® Python AST Module

14
15
16
17
18
19
20
21
22
23
24
25

X = df.drop("No-show",axis=1)
y = df["No-show"]

X_trainl = pd.get_dummies(X)
y.replace("No", ©,inplace=True)
y.replace("ves", 1,inplace=True)

scaler = StandardScaler().fit(X_traini)
rescaledX2 = scaler.transform(X_trainil)

X_train, X_test, y_train, y_test = train_test_split(
rescaledX2, y, train_size=0.8, test_size=1-0.8, random_state=0)

» Pipeline Replay:
® Handling Missing Packages

® Handling Missing Data Files

— o000

39

[9] Auto-Suggest: Learning-to-Recommend Data Preparation Steps Using Data Science Notebooks. SIGMOD 2020.



Auto-Suggest

O Key Component
» RNN-based Model

-1 -]
B O A

RNN <:> <:> <:Z'> <Z> <,‘I> <:> <I> m GroupBy J

L 4 4 1 © 4« 4 4
Operator I BN Bn BN BN BN B . Single-operator

Embedding JsonNorm Apply DropNA Join Groupby Agg Unpivot Pivot predictions given tables

MLP

40
[9] Auto-Suggest: Learning-to-Recommend Data Preparation Steps Using Data Science Notebooks. SIGMOD 2020.



Auto-Pipeline

[ Key Idea
» Automatically Synthesize pipelines from by-targe (Synthesize by Example)

Source files Pipeline Data-warehouse Bl dashboard
o US-Store-1 Sales data: 2019-Dec Tt9t
Pipeline [,
0] | —  — | h€
| A

o UK-Store-2 Sales data: 2019-Dec  Synthesized Z

=@

; 7
T QQ:II—I?I—II o "o
I

3 US-Store-3 :Sales data: 2020-Jan

ag [ dl

Target Target

41
[10] Auto-Pipeline: Synthesizing Complex Data Pipelines By-Target Using Reinforcement Learning and Search. VLDB 2021.



Auto-Pipeline

OO0 Framework
» Input:

» afew input dataset to be processed.
» an example “target” output.

» Output: a synthesized pipeline to generate results like the “target”.

0 Two Methods:
» Diversity-based Search among the search space
» Learn-to-Synthesize by Reinforcement Learning

P Join T1T2
Slart Gitny  e—

Groupby T// w T2T3
/ \... ~

SABES. - o).

Unpivot T1

42
[10] Auto-Pipeline: Synthesizing Complex Data Pipelines By-Target Using Reinforcement Learning and Search. VLDB 2021.



Human-in-the-loop Pipeline Generation

DORIAN

Recommendation-
based approaches

Auto-Suggest

Human-in-
the-loop
Pipeline

Generation

Auto-Pipeline

Combination-based
approaches

HAIPipe

Program synthesis
approaches

Copilot

ChatGPT

43



Combination-based Approaches

Manual Domain knowledge Experience- and
heuristic-based

Pipeline
Automatic Automatic Searching Lack domain
Pipeline and Generation knowledge

HAIPipe: can we combine manual pipeline (HI-pipeline)
and automatic pipeline (Al-pipeline) to get a new
pipeline (HAI-pipeline) that is better than both two
pipeline?

[11] HAIPipe: Combining Human-generated and Machine-generated Pipelines for Data Preparation. SIGMOD 2023.



HAIPipe
0 An Running Example of HAIPipe

1 import pandas as pd

2 from sklearn.preprocessing import StandardScaler

3

4 data = pd.read_csv("adult.csv")

5 data = dataldatal'workclass'] != '?']

6 data = dataldatal'occupation'] != '?']

7

8 | X = data.drop(["income"], axis=1) Hl-pipeline h,
9

10 from sklearn.preprocessing import OneHotEncoder

11 |> def one_hot_encoder(data): -

15 | X = one_hot_encoder(X) Al-pipeline a,
16

17 from sklearn.preprocessing import PolynomialFeatures
18 |> def polynomial_features(data): - . .

22 | X = polynomial_features(X) Al-pipeline a,
23

24 y = data["income"]

25

26 scaler = StandardScaler()

27 scaler.fit(X)

28 | X = scaler.transform(X) Hl-pipeline h,
29

30 from sklearn.feature_selection import VarianceThreshold
31 |> def variance_threshold(data): - R

35 | X = variance_threshold(X) Al-pipeline as

45
[11] HAIPipe: Combining Human-generated and Machine-generated Pipelines for Data Preparation. SIGMOD 2023.



HAIPipe

O HAIPipe Framework
» Stepl - Hl-program Parsing
» Step?2 - Al-pipeline Optimization
» Step3 - HAl-pipeline Generation
» Step4 - HAl-program Generation

——— e e e e e e e e e e e e e e e e e e e e e e e e e e

ST TTTTEE T TR \ ‘, ( ) N
i CLIENT . @ Al-pipeline Optimization Al-pipeline Ga

I

I P! ] T

: i : @Pllala?;ic:‘gram — [E5E 5| An RL-based E D—D

| HI Prep B . ooo Model . “-. ond
| a Program =| : - kOperations | ., o e LRY ., enc
[ </> — = | H

: = & : i W i G start T M

I Q I ( 3 . .

: Sc[i):r;[taist <« 3| ! | (3 HAl-pipeline Generation | HI-pipeline Gy (__J

' HAI Prep b @ :

! ! HAI-program — ! Enumeration HAI-pipeline G

| Program <|::] Generation (-I— 2, ) pip HAI

' . CZEI( . Samplin

: b i e (—{Qg Execution Threads %Q’
\ 0 !

________________________________________________________________

46
[11] HAIPipe: Combining Human-generated and Machine-generated Pipelines for Data Preparation. SIGMOD 2023.

L g gy



Human-in-the-loop Pipeline Generation

DORIAN

Recommendation-
based approaches

Auto-Suggest

Human-in-
the-loop
Pipeline

Generation

Auto-Pipeline

Combination-based
approaches

HAIPipe

Program synthesis
approaches

Copilot

ChatGPT

47



Program Synthesis Approaches

O Copilot

@ parse_expenses.py
import datetime

def parse_expenses(expenses_string):
"""parse the list of expenses and return the list of triples (date, value, currency).
Ignore lines starting with #.
Parse the date using datetime.
Example expenses_string:
2016-01-062 -34.01 USD
2016-01-63 2.59 DKK
2016-01-063 -2.72 EUR
expenses = []
for line in expenses_string.splitlines():
if line.startswith("#"):
continue
date, value, currency = line.split(" ")
expenses.append((datetime.datetime.strptime(date, "%Y-%m-%d"),
float(value),
currency))

return expenses

& Copilot




Program Synthesis Approaches

‘ 5 ‘ please write an ML program for "Diabetes" dataset.

O ChatGPT B

Sure, here's an example machine learning program for the "Diabetes” dataset using Python

and scikit-learn library:

pandas pd
sklearn.model_selection train_test_split
sklearn.preprocessing StandardScaler
sklearn.linear_model LogisticRegression

sklearn.metrics accuracy_score

data = pd.read_csv(

Writing programs
through dialogue. e e i s~ i s e, 3. st e

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

clf = LogisticRegression()
clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print( , accuracy)

Note: This program assumes that the "diabetes.csv" file is present in the same directory as
the Python script. If the file is located elsewhere, you'll need to modify the file path

accordingly.



Program Synthesis Approaches

O Program synthesis approaches for Data Science
» Lack dataset information and domain knowledge.

# deal outliers
X = X.clip(lower=X.quantile(9.01), upper=X.quantile(©.99), axis=1)

(a) Outlier removal code suggested by Copilot++.

# deal outliers
columns_nozero_values = \
['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']
for n in columns_nozero_values:
data[n] = dataln].replace(®,np.NaN)
mean = int(dataln].mean())
data[n] = dataln].replace(np.NaN,mean)

(b) Outlier removal code in HI-program written by users.

50



Outline

O Overview
* Motivation
* Challenges
 Manual Pipeline Orchestration
 Automatic Pipeline Generation
 Human-in-the-loop Pipeline Generation

OOpen Problems

51



Open Problems

OSearch Space Refinement

» How to utilize human guidance to constrict the search space of possible
pipelines and define operations that are specific to particular tasks.

[0 Domain Knowledge Injection

» How to inject domain knowledge to automatic pipeline generation
algorithms.

[0 Smooth Integration with AutoML

» How to smoothly integrate pipeline generation with other AutoML tasks,
such as hyperparameter tuning and model selection.



