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Motivation
pData Preparation Pipeline

ØRequires a series steps
Ø data wrangling, data cleaning, feature engineering…

p Limitations:
ØRely on experts
ØTime-consuming
ØHard to discover the optimal solution

Original Data Prepared Data

Join imputa,on PCA

Data Preparation Pipeline



6

Challenges
pLarge and complex search space

ØEach step can be implemented by different algorithms
ØComplex dependencies among operators

Original Data Prepared Data

Join imputation PCA

Data Preparation Pipeline

• Merge Join
• Inner Join
• Nested Loops Join
• Hash Join

• Mean and Median
• Dropping
• Statistics-based
• ML-based
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Challenges
pDomain- or even dataset-specific

ØDependency of downstream tasks
ØDependency of underlying datasets

Original Data Prepared Data

Join imputation PCA

Pipeline B

Original Data Prepared Data

Joinimputation PCA

Pipeline A

Which one is better?
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Three Types of Data Preparation Pipelines

Manual Pipeline Orchestra1on

Human-in-the-loop Pipeline Generation
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An Example

pHand-written script
Ø UDFs
Ø  Domain Knowledges 1. Dealing Outlier

2. Feature Augmentation

3. Removing Irrelevance 
Features

4.Encoding

5.Scaling

6. Train-Test Splitting
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Manual Pipeline Analysis

pOperator Level

Ø Data Cleaning
Ø Encoder
Ø Scaler
Ø Feature Transformation
Ø Feature Selection

Analysis based on 800 notebooks from Kaggle
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Manual Pipeline Analysis

pPipeline Level

Ø#-Operators vs. #-Notebooks
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Manual Pipeline Analysis

pPipeline Level

ØPerformance after adding operators

Add Feature 
Selection

Worse
62.62%

Better
37.38%

Add Scaler

Worse
52.78%

Better
47.22%
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Take-away
pPros

Ø These pipelines are very flexible.
Ø These pipelines can be easily injected with domain knowledge 

and user experiences.

pCons
Ø Human orchestrated pipelines may have “blind spots”.

Can we automatically generate the pipeline? 
- Reduce human effort ↓
- Improve the performance ↑
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Automatic Pipeline Generation

Search Space
Candidate Pipelines

Machine 
Algorithms
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Automatic Pipeline Generation

Automatic 
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Reinforcement 
learning

Auto-Weka

Auto-Sklearn

TensorOBOE

AplineMeadow

TPOT

Learn2Clean

DeepLine

ATENA
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19

p Problem definition:
Ø CASH: Combined Algorithm Selection and Hyperparameter optimization

p Key Idea:
Ø Bayesian optimization 
Ø p(c | λ) 

[1] Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms
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pKey Idea
Ø Meta Learning for coarse-grained pipeline selection
Ø Bayesian Optimization for fine-grained pipeline generation

Target ML Task Most similar K tasks

Meta 
Learning

Candidate Pipelines

Bayesian Optimization 
Techniques

Best Pipeline and Hyperparameters

[2] Matthias Feurer et al. Efficient and Robust Automated Machine Learning. NIPS 2015.
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TensorOBOE

pTensorOBOE: a new structured model based on tensor 
decomposition for AutoML pipeline selection

pKey Idea
Ø Use low rank tensor decomposition as a surrogate model 

for efficient pipeline search
Ø Use meta-learning to optimize an error matrix, which can 

be decomposed as 6 matrices

[3] C. Yang el al. AutoML Pipeline Selection: Efficiently Navigating the Combinatorial Space. SIGKDD 2020
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Alpine Meadow

pKey Idea
Ø Rule-based optimization, can be combined with multi-armed 

bandits, Bayesian optimization and meta-learning

[4] Z. Shang. et al.Democratizing Data Science through Interactive Curation of ML Pipelines. SIGMOD 2019
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Automatic Pipeline Generation
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TPOT

pKey Idea
pA tree-based representation model of data preparation 

pipelines
poptimize the pipelines using genetic programming

[5] R. S. Olson el al. TPOT: A tree-based pipeline optimization tool for automating machine learning. AutoML@ICML 2016
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TPOT

pKey Idea
pA tree-based representation model of data preparation 

pipelines
poptimize the pipelines using genetic programming

pKey Steps
ØStep1: Random generate 100 pipelines.
ØStep2: Select 20 best pipelines.
ØStep3: Each of the top 20 selected pipelines produce 

five copies (i.e., offspring) into the next generation’s 
population

ØStep4: Repeat this evaluate-select-crossover-mutate 
process for 100 generations.

[5] R. S. Olson el al. TPOT: A tree-based pipeline optimization tool for automating machine learning. AutoML@ICML 2016
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Automatic Pipeline Generation
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may incur 
high cost
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Reinforcement Learning
pKey Idea

Ø Model Data Preparation as the Markov Decision Process
Ø RL predicts data preparation operator step-by-step

pGoal
ØThe data prepared through this series of operations can 

achieve the best results in machine learning tasks
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Reinforcement Learning
pGeneral Framework

Ø State: vector of dataset and pipeline;
Ø Action: a set of data preparation operations;
Ø Reward: ML evaluation result.
Ø Transition function: add an action (operation) to 

pipeline and execute it to generate a new dataset.

Environment

Data prep pipeline

Executor

Agent

Policy function

pipeline, dataset

operation

evalua,on score
update
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pAim at orchestrating data cleaning pipeline
Ø Decision strategy is optimized by Q-Learning

Learn2Clean

[5] Laure Berti-Equille. Learn2Clean: Optimizing the Sequence of Tasks for Web Data Preparation. WWW 2019
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pKey Idea
Ø Decision strategy is optimized by Q-Learning
Ø Learn2Clean uses a Q-value matrix to model the value 

of selection for each state

Learn2Clean

Reward: 

[5] Laure Berti-Equille. Learn2Clean: Optimizing the Sequence of Tasks for Web Data Preparation. WWW 2019
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DeepLine
pGoal:

Ø Automatic generation of end-to-end ML pipelines

[6] Y. Heffetz el al. DeepLine: AutoML Tool for Pipelines Generation using Deep Reinforcement Learning and Hierarchical Actions Filtering.

Model a pipeline as a grid of operation
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DeepLine
pGoal:

Ø Automatic generation of end-to-end ML pipelines
pKey Idea

ØDeepLine uses DQN to optimize the policy strategy of selecting 
operation in each node of the grid.

ØAgent: Hierarchical action-modeling approach for modelling 
dynamic action spaces

[6] Y. Heffetz el al. DeepLine: AutoML Tool for Pipelines Generation using Deep Reinforcement Learning and Hierarchical Actions Filtering.

Pipeline -> A Grid of Operation
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ATENA
p Goal

Ø Automatically Generating Exploratory Data Analysis (EDA) Pipeline
p Key Idea

Ø Formulate the EDA process as the Markov Decision Process
Ø Deep reinforcement learning with domain-specific reward function

[7] O.El et al. AutomaNcally GeneraNng Data ExploraNon Sessions Using Deep Reinforcement Learning. SIGMOD 2020.
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Take-away
pPros

Ø Automatic generation, blink and it’s done
Ø Lower the barriers to a good data preparation pipeline

pCons
Ø May be misled by blindly suggesting possibly good pipeline
Ø Hard to incorporate the user expertise

Can we involve users into the Auto-pipeline generation process? 
- Relatively low human effort 
- Inject the users’ feedback and expertise 
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Human-in-the-loop Pipeline Generation
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DORIAN
pKey Idea

Ø Offline: a database to store previously pipelines from different teams
Ø Online: suggest top-k pipelines based on user inputs 

Database

Pipelines
Tasks

Recommendation
Engine

Query:
l Dataset
l DS Task
l Evaluation?
l Pipeline?

Search

Ranked Pipeline

[8] Sergey Redyuk et al. DORIAN in action: Assisted Design of Data Science Pipelines. PVLDB 2022
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Auto-Suggest

pGoal
Ø Recommend Data Preparation Steps

pKey Steps
ØData Collection: Python Notebooks from Kaggle/OpenML/Github
ØPipeline Extractor: 

l Python AST Module

ØPipeline Replay:
lHandling Missing Packages
lHandling Missing Data Files

[9] Auto-Suggest: Learning-to-Recommend Data Preparation Steps Using Data Science Notebooks. SIGMOD 2020.
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Auto-Suggest

pKey Component
ØRNN-based Model

[9] Auto-Suggest: Learning-to-Recommend Data Preparation Steps Using Data Science Notebooks. SIGMOD 2020.
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Auto-Pipeline

pKey Idea
Ø Automatically Synthesize pipelines from by-targe (Synthesize by Example)

[10] Auto-Pipeline: Synthesizing Complex Data Pipelines By-Target Using    Reinforcement Learning and Search. VLDB 2021.
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Auto-Pipeline
pFramework

Ø Input: 
Ø a few input dataset to be processed. 
Ø an example “target” output.

ØOutput: a synthesized pipeline to generate results like the “target”.
p Two Methods: 

Ø Diversity-based Search among the search space 
Ø Learn-to-Synthesize by Reinforcement Learning 

[10] Auto-Pipeline: Synthesizing Complex Data Pipelines By-Target Using    Reinforcement Learning and Search. VLDB 2021.
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Human-in-the-loop Pipeline Generation
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Combination-based Approaches

Pros Cons

Manual 
Pipeline

Domain knowledge Experience- and 
heuristic-based

Automatic 
Pipeline

Automatic Searching 
and Generation

Lack domain 
knowledge

HAIPipe: can we combine manual pipeline (HI-pipeline) 
and automatic pipeline (AI-pipeline) to get a new 
pipeline (HAI-pipeline) that is better than both two 
pipeline?

[11] HAIPipe: Combining Human-generated and Machine-generated Pipelines for Data Preparation. SIGMOD 2023.
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HAIPipe
pAn Running Example of HAIPipe

[11] HAIPipe: Combining Human-generated and Machine-generated Pipelines for Data Preparation. SIGMOD 2023.



pHAIPipe Framework
ØStep1 - HI-program Parsing
ØStep2 - AI-pipeline Optimization
ØStep3 - HAI-pipeline Generation
ØStep4 - HAI-program Generation
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HAIPipe

[11] HAIPipe: Combining Human-generated and Machine-generated Pipelines for Data Preparation. SIGMOD 2023.
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Program Synthesis Approaches
pCopilot
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Program Synthesis Approaches
pChatGPT

Writing programs 
through dialogue.
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Program Synthesis Approaches
pProgram synthesis approaches for Data Science

ØLack dataset information and domain knowledge.
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Open Problems

pSearch Space Refinement
Ø How to utilize human guidance to constrict the search space of possible 

pipelines and define operations that are specific to particular tasks.

p Domain Knowledge Injection
Ø How to inject domain knowledge to automatic pipeline generation 

algorithms.

p Smooth Integration with AutoML
Ø How to smoothly integrate pipeline generation with other AutoML tasks, 

such as hyperparameter tuning and model selection.


