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Abstract—Visualization charts are widely utilized for presenting structured data. Under many circumstances, people want to digitalize
the data in the charts collected from various sources (e.g., papers and websites), in oder to further analyze the data or create new
charts. However, existing automatic and semi-automatic approaches are not always effective due to the variety of charts. In this paper,
we introduce a crowdsourcing approach that leverages human ability to extract data from visualization charts. There are several
challenges. The first is how to avoid tedious human interaction with charts and design effective crowdsourcing tasks. Second, it is
challenging to evaluate worker’s quality for truth inference, because workers may not only provide inaccurate values but also misalign
values to wrong data series. Third, to guarantee quality, one may assign a task to many workers, leading to a high crowdsourcing cost.
To address these challenges, we design an effective crowdsourcing task scheme that splits a chart into simple micro-tasks. We
introduce a novel worker quality model by considering worker’s accuracy and task difficulty. We also devise effective task assignment
and early-termination mechanisms to save the cost. We evaluate our approach on real-world datasets on real crowdsourced platforms,
and the results demonstrate the effectiveness of our method.

Index Terms—Data Visualization, Crowdsourcing, Truth Inference, Task Assignment.
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1 INTRODUCTION

Visualization charts are indispensable to visualize structured data
due to their perceptual advantages [25], because charts not only
help people understand many aspects of data, such as distribution
and variation trend [26], [27], but also provide intuitive compar-
isons for data from different sources [32]. For example, Figure 1
shows a line chart, which visualizes the numbers of crowdsourcing
papers at three leading database conferences from 2015 to 2018.

In many cases people want to extract the underlying data from
charts in order to further analyze the data, update the charts, or
create new charts by integrating data from multiple sources [15],
[18]. For example, considering Figure 1, if an analyst wants to
do a survey from 2015 to 2019. Suppose that she only has the
chart (visualizing the data from 2015 to 2018) and the raw data
in 2019. She has to first extract the data from the chart, which is
shown in a relational table in the figure. Then, she simply adds a
new column containing the information of 2019 to the table and
redraws a new chart. Taking another example, a business analyst
may be interested in the financial report of Fortune 500 companies,
which can be obtained in the form of charts. However, if she wants
to manipulate the data in the charts or redesign the charts, it is
important to firstly digitalize data from the charts.
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Indeed, data extraction from charts has attracted much interest
from academia in recent years. Some automatic or semi-automatic
chart data extraction tools have been developed [35], [18]. Auto-
matic tools like [35] apply computer vision and machine learning
models to first recognize the text in a chart and then infer the
underlying data points. However, the performance of such methods
is far from satisfactory: accuracy of both the text recognition and
data point extraction is around 60% - 70% [18]. Some semi-
automatic approaches [35], [18] are also proposed in the HCI
community. They first leverage the users to specify some core
parts in charts, like drawing the boundary of a chart, identifying
the values of the x-axis and y-axis. They then utilize image
processing tools to extract data. However, these methods also
have several limitations. First, they mostly rely on machine-based
algorithms to extract values in charts, which is also not accurate
enough, especially for charts with complicated patterns(e.g. many
legends or intersections). Second, they are not general and usually
have restrictions on the charts to achieve good performance. For
instance, [35] and [18] cannot handle line and stacked bar charts.

Fortunately, crowdsourcing can be used to leverage hundreds
of thousands of crowd workers to solve large-scale machine-hard
tasks. We propose a crowdsourcing chart data extraction frame-
work CROWDCHART that harnesses crowd workers on crowd-
sourcing platforms like Amazon Mechanical Turk (AMT) [1] to
extract data from charts at relatively low cost. We study the fol-
lowing research challenges that naturally arise in the framework.

The first challenge is quality control for crowdsourced chart
data extraction. Due to the openness of crowdsourcing, workers
often yield relatively low-quality results, or even noise when
extracting data from charts. Consider the specific scenario of chart
extraction: workers may be careless when reading the numbers
in a chart, and their quality may also be affected by visual
features of the chart, such as chart type, log-scaled y-axis, etc. For
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Fig. 1: Example for Chart Extraction

example, stacked bar charts are harder to be recognized than pie
charts. Moreover, even for careful workers, their quality may be
significantly influenced by a kind of common errors, data series
misalignment. For example, in Figure 1, a worker extracts the
three data points [5, 3, 4] in 2017 correctly, but she may align
4 to VLDB and 3 to ICDE, leading to data series misalignment.
Although there exist some works [36], [42] on crowdsourcing
quality control for numerical data, they cannot effectively address
the above difficulties. We apply a redundancy-based strategy that
assigns a task to multiple workers and aggregates their answers
to infer the truth. We introduce a novel truth inference model that
incorporates worker accuracy, chart characteristics and the effect
of misalignment together into a Gaussian model to measure the
worker quality. Based on this, we develop effective techniques for
accurate worker quality estimation and truth inference.

The second challenge is how to reduce the crowdsourcing cost.
As we may have many charts to extract, a straightforward method
in our redundancy-based strategy may generate a large number
of tasks, which incur significant monetary cost. To address this,
we continuously evaluate the quality of tasks based on current
answers using a confidence-based model, and introduce an early-
termination strategy that terminates the tasks with high-quality
inferred results. Moreover, we devise a dynamic task assignment
method that assigns a task to the workers who can mostly improve
the task quality. We estimate the updated truth distributions based
on existing answers and the upcoming workers’ quality before
they answer the task, and then select the best worker to assign
a task. Our method can not only improve quality, but also early
terminates many tasks as early as possible.

Third, it is challenging to design effective crowdsourcing tasks
for chart extraction. A straightforward method is to crowdsource
an entire chart and ask the worker to submit a relational table.
Obviously, such task is overwhelming to workers who are usually
good at “micro” tasks (see survey [21]). To address the problem,
we design an effective crowdsourcing task scheme that splits a
chart into a batch of micro-tasks, each of which extracts a specific
part of the chart. Then, we can digitalize the relational table by
aggregating crowd answers of the tasks.

To summarize, we make the following contributions.
(1) We propose a crowdsourced chart data extraction frame-

work. To the best of our knowledge, it is the first systematic work
that utilizes the crowd to extract data from charts.

(2) We design a truth inference model to derive accurate
answers and workers’ quality simultaneously.

(3) We develop effective task assignment and early-stopping
techniques to largely reduce the crowdsourcing cost.

(4) We evaluate our approach on real datasets on AMT. The
results demonstrate its superiority over existing methods.

The rest of the paper is organized as follows. Section 2 reviews
related works. Section 3 formalize the problem and introduce
the framework. We propose truth inference and task assignment
techniques in Sections 4 and 5 respectively. Section 6 presents
experiments and we conclude in section 7.

2 RELATED WORK

This section reviews the related works which fall into two cate-
gories: 1) algorithms and tools with respect to data extraction from
charts; 2) crowdsourcing techniques including cost control, quality
control and crowdsourcing system.

Note that this paper extends our conference version [9], where
the main extension is summarized as follows. First, while the
conference version only focuses on truth inference, this paper
introduces a new task assignment approach, which assigns each
incoming worker with a task that achieves the most improvement
of the overall quality. We present the proposed approach and eval-
uate its performance respectively in Sections 5 and 6.4. Second,
compared with the short version, we provide more technical details
of truth inference, such as the inference algorithm as well as its
complexity analysis. Third, for more comprehensive empirical
evaluation, we add more baselines and compare our proposed
approaches with them in Section 6.

2.1 Data Extraction from Charts
Approaches with respect to data extraction from charts can be
categorized into two groups: automatic [35], [44], [17] and semi-
automatic [18], [30], [39] tools. Some automatic frameworks [16],
[17] only focus on extracting legend keys from charts. [44]. They
generate edge maps, vectorize them and utilize rule-based methods
to extract keys from the line, bar or pie charts. However, these
works can not obtain the numerical data in charts. Moreover,
accurate edge maps are hard to retrieve from real-world charts
because of large variance of charts quality. AI-Zaidy et al. [6]
proposed a method that can only handle bar charts. Savva et al.
[35] is a system that automatically extracts data from bar chart and
pie chart. However, it only achieves 71% and 64% accuracy on bar
chart and pie chart respectively and has many restrictions on styles
of charts. For semi-automatic approaches, WebPlotDigitizer [33]
is a digitizing tool that extracts data from bar, line, pie charts,
which has both automatic and manual mode. Since the automatic
mode has a low accuracy because of a simple color detection
algorithm, people always tend to use the manual mode to detect
values. In this mode, the user has to specify much necessary
information, which is tedious and time-consuming, especially for
multi-series data. Similarly, [39], [30], [18] are semi-automatic
tools that require many manual operations of a user to extract
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data from a chart, which has poor scalability. Moreover, these
approaches always set many constrains like distinct colors for each
series of data, which limits the generalization.

2.2 Crowdsourcing

2.2.1 Truth Inference

The most straightforward method to infer the truth from crowd
workers is majority voting(MV). For numerical data in our
problem, the MV takes the average as the truth. However, MV
regards all workers as equal, which does not always hold in
practice. Therefore, some existing state-of-the-art works[23], [24],
[36] have been proposed to infer the truth of numerical data
by considering workers’ quality. They model each answer as a
Gaussian distribution N (u, σ2), where u is regarded as the truth
and σ2, the variance, incorporates the workers’ quality. Shan
et al. [36] focuses on tabular data, taking both categorical and
numerical data into account. Li et al. [23] considers the source
(e.g. web pages, wiki) reliability and confidence interval of the
variance to obtain a precise estimation. Then the Expectation
Maximization(EM) algorithm [13] is applied to derive both the
workers’ quality and truth. However, these approaches mentioned
above do not consider the characteristics of the data extraction task
in this paper. We take into many significant factors such as types
of charts and types of Y-axis(log-scale or not) into consideration
to model the difficulty of each question. Then the difficulty is
incorporated into the computation of the Gaussian variance. Also,
when inferring the truth, we consider the misalignment of data,
which is a common phenomenon in data extraction task.

2.2.2 Task Assignment

Task assignment aims to dynamically select which tasks should
be assigned to an incoming worker, which can improve the quality
most. Most crowdsourcing systems [29], [14] leverage the crowd’s
ability to process machine-hard queries like collecting data from
the open world, but they assign tasks randomly to workers.
Li et al.[19], [20], [22] judiciously select tasks that bring the
largest quality improvement. However, they only focus on tasks
with categorical answers. In this paper, CrowdChart proposes a
confidence-based task assignment model for data extraction tasks.
Given an incoming worker, considering her quality, we will assign
the task that has low confidence and can be improved much to her.

2.2.3 Other Crowdsourcing Techniques

Recently, crowdsourcing has attracted much attention in academia
and industry. To encapsulate the complexity of interacting with
the crowd, several crowd-powered database system like Deco [31],
CrowdDB [14] and CDB [19], [20] were proposed. They imple-
ment and optimize crowdsourcing operators like crowdsourced se-
lection [34], crowdsourced join [10], [11], crowdsourced sort [28],
crowdsourced collection [8]. The optimization goal is to trade-off
the quality, cost and latency.

3 OVERVIEW

In this section, we first formalize the problem of chart data
extraction in Section 3.1, and then introduce a CROWDCHART

framework in Section 3.2.

3.1 Problem Definitions

This paper focuses on extracting tabular data from visualization
charts using crowdsourcing. Formally, we define fundamental
concepts used in our works in this section.

Chart model. Formally, let us consider a collection of charts
C = {C1, C2, . . . , C|C|}. For ease of representation, C is inter-
changeably utilized to denote both a chart and the data appearing
in the chart. A chartC consists of a sequence of legend keys, which
is denoted by C.K = [k1, k2, . . . , km]. A legend key is used to
refer to a group of data visualized in the chart. For example, the
chart in Figure 1 has three legend keys, namely SIGMOD, VLDB
and ICDE, where each of these keys identifies the numbers of
crowdsourcing papers over years of the corresponding conference.
Based on this, the data model of a chart is defined as follows.

Definition 3.1 (Chart Data Model). Given a chart C, the data
visualized in C consists of the following two elements: (1) A
sequence of keys K = [k1, k2, . . . , km]; (2) a set of tuples
T = {t1, t2, . . . , tn}, where each tuple ti = [ti1, ti2, ..., tim]
represents the data points in the i-th labels of the horizontal
axis, i.e., x-axis. Note that the order of data points in each
tuple ti must be the same with the order of keys in K.

Figure 1 shows an example of chart data with three keys K =
[SIGMOD, VLDB, ICDE] and four tuples t1 to t4. For example, tuple
t1 = [3, 6, 3] contains the data points corresponding to SIGMOD,
VLDB and ICDE in 2015 respectively. It is easy to see that data in
a chart naturally corresponds to a relational table where the legend
keys are row names, points in x-axis denote the column names and
each tuple corresponds to a data column in the table.

The chart model is general for a variety of commonly used
charts, including line chart, bar chart (stacked bar chart), and pie
chart. Note that the pie chart is a special case with only one tuple
containing the ratios or number of various keys.

Crowdsourcing task design. As analyzed previously, the auto-
matic and semi-automatic approaches [35], [6], [12], [44] have
limitations on achieving superior performance for chart data
extraction. To address the problem, we harness the crowd intel-
ligence to extract data from charts. A straightforward approach is
to crowdsource each entire chart to crowd workers and ask them
to submit a relational table as illustrated in Figure 1. Although
simple, the approach is not effective due to the following reasons.
First, it will incur high crowdsourcing latency. Since a chart
usually contains many data points, it is time-consuming for a
worker to extract them all. Second, as answers from the crowd
may be noisy, a commonly used strategy is to first assign a task
to multiple workers and aggregate their answers to infer results.
However, it is not easy to aggregate entire tables.

To achieve better performance, we introduce a fine-grained
approach that splits a chart into a batch of micro-tasks1 to reduce
latency and improve quality. Specifically, we design four types of
crowdsourcing tasks, as illustrated in Figure 2.

Preprocessing tasks. As quality of chart data extraction may
depend on visual features of the chart, we define the following
three types of preprocessing tasks before extracting the data: 1)
chart type classification that categories the chart type, 2) Y-axis
classification that identifies whether the y-axis is log-scaled and
3) legend identification that collects a sequence of legend keys.

1. For simplicity, we use micro-task and task exchangeably if context is
clear.
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Fig. 3: Framework of CrowdChart

We utilize crowdsourcing to address preprocessing tasks, be-
cause these tasks are quite effortless for the crowd who can easily
produce good results. Although some simple preprocessing tasks,
e.g., chart classification, can be also solved by ML algorithms [40],
[38], the accuracy of ML algorithms on more complicated prepro-
cessing tasks is far from satisfactory. For example, as reported
in previous studies, the accuracy of recognizing legend keys is
normally less than 60% [16], [17].

1) Chart classification task. Intuitively, different types of
charts have different difficulty levels for data extraction. For
example, a pie chart is easier to extract because its visual structure
is more compact and it only has one tuple (as discussed above).
In contrast, line charts and stacked bar charts are more difficult,
because they contain multiple data groups and the exact data
numbers are harder to recognize. Thus, we first ask the crowd
to classify the chart, which provides guidance for the other
crowdsourcing tasks.The task is defined as below.

Definition 3.2 (Chart Classification Task). Given a chart C,
a chart classification task is a multiple-choice question to
the crowd. The current version of CrowdChart supports
four choices, bar chart, line chart, pie chart and
stacked bar chart, and asks the crowd to choose the
one that C belongs to.

An example chart classification task is shown in Fig. 2(a),
where a crowd worker will select the choice Line Chart.

2) Y-axis classification task. Another factor affecting the dif-
ficulty is whether y-axis is log-scale. Naturally, it is not easy for
human to recognize data points given log-scaled y-axis because
the numbers are not uniformly distributed. Thus, we also leverage
the crowd to identify this issue as one of the preprocessing steps.

Definition 3.3 (Y-axis Classification Task). Given a chart C,
y-axis classification task is a binary-choice question to the
crowd, where choice Yes means y-axis of C is log-scaled and
No means it is not.

An example task is shown in Fig. 2(b) where a crowd worker
will select No for the question.

3) Legend identification task. Here is the definition of the
legend identification task.

Definition 3.4 (Legend Identification Task). Given a chart C,
legend identification task is a fill-in-blanks question that asks
the crowd to collect a sequence of legend keys, denoted by
K = [k1, k2, . . . , km].

Fig. 2(c) illustrates an example of legend identification task
with three keys SIGMOD, VLDB and ICDE to be collected. One
may ask whether it is necessary to use crowdsourcing to identify
labels of x-axis, e.g., years in Fig. 2(c). Based on our evaluation,
they are easy to identify by automatic algorithms due to their fixed
locations and neat arrangement.

To summarize, the above three types of tasks are used for
preprocessing steps. First, the result of these tasks, such as legend
keys, can be directly used for further data extraction. Second, some
results, such as chart type and log-scaled y-axis, can be used for
evaluating difficulties of chart data extraction. Moreover, based
on our observations, these tasks are quite effortless for the crowd
worker who can provide very accurate answers. Thus, we will
not elaborate these tasks and focus on a more challenging tuple
extraction task as below.

Tuple extraction task. The central task for chart data extraction
is to identify the tuples. We design a tuple extraction task that
crowdsources an entire tuple instead of putting values of a tuple in
different tasks. The reason is two-fold. First, most crowdsourcing
platforms charge a fixed amount of commission fee for each HIT.
Thus, it is more economical to put a certain number of questions
in a task. Second, after a crowd worker understands the chart,
extracting a tuple will not introduce much more effort to her
compared with an individual value.
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Definition 3.5 (Tuple Extraction Task). Given a chart C, a
sequence of legend keys K = [k1, k2, . . . , km] and a label
i in horizontal axis, tuple extraction task is a fill-in-blanks
question that collects the i-th tuple ti = [ti1, ti2, . . . , tim].

For example, Fig. 2(d) shows a tuple extraction task, which
aims to collect values corresponding to SIGMOD,VLDB and ICDE
respectively. Then the chart in Fig. 2(d) can be divided intoN = 4
tuple extraction tasks. Note that the order of the sequence in
collected tuples is consistent with that of pre-collected legend
keys. In addition, it can also be called data extraction task.

3.2 The CROWDCHART Framework
Figure 3 shows the overall framework of CrowdChart. After
completing the preprocessing tasks, the requester publishes some
tuple extraction tasks. Then given workers who request these tasks,
our task assignment module assigns the most appropriate tasks to
workers. Next, when a crowd worker submits the answer of a
task, we first align the answer based on the worker’s quality and
answers that have been submitted by other workers corresponding
to this task. Then we infer the truth considering the workers’
quality and task difficulty using the Expectation-Maximization
(EM) algorithm [13]. The inferred truth and workers’ quality can
also be utilized to guide task assignment in the next iteration.
The ultimate goal of CrowdChart is to leverage the truth inference
and task assignment to estimate the value in T , so as to obtain a
satisfactory result compared with the truth based on a confidence-
based model. For values that already have high confidence, an
early-stopping method is applied to save the crowdsourcing costs.

The tuple extraction task in this framework is quite challeng-
ing because the workers are more error-prone to provide noisy
answers. First, the workers need to recognize numeric values
from the chart, which is much more difficult than the existing
crowdsourcing on categorical values (e.g., positive or negative in
sentiment analysis) [43]. For example, one worker may recognize
the number of SIGMOD crowdsourcing paper in 2016 as 6 or 7
although the ground truth is 7. There are few existing works [36],
[42] that study crowdsourcing numerical values. However, they
cannot easily solve the problem as they do not consider difficulty
levels such as the chart type, log-scaled y-axis, etc. Second,
misalignment is a kind of worker errors that can significantly
influence the quality. For example, when extracting data, answers
may be misaligned with their legend keys. For t4 in Fig. 2(d),
we can see that the ground truth of the year 2018 is that [3
(SIGMOD), 1 (VLDB), 15 (ICDE)]. For example, if a worker
w1 answers [3, 2, 15], we can take it as an accurate and aligned
answer. However, if a worker w2 gives an answer [15, 1, 3], she
is likely to misalign legends “SIGMOD” and “ICDE” carelessly,
but she answers the values with perfect quality. If we do not
consider such kind of errors, it will cause a high bias on both truth
and workers’ quality estimation. The above obstacles motivate
us to study quality control problems for crowdsourced chart data
extraction.

We first define the worker model as follows. We use W to
denote a pool of workers, and awi = [awi1, a

w
i2, ..., a

w
im] to denote a

sequence of answers for data points in task ti by worker w ∈ W .
Oi denotes the set of workers that provide answers for ti and Aij
denotes the set of answers of tij provided by multiple workers.
The overall obtained answers is denoted by A, where awij ∈ A and
awi , Aij ⊂ A. For example, suppose workers w1, w2 answer task

Algorithm 1: Framework of CrowdChart
Input: A collection of charts C.
Output: Estimated truth of each data point t̂ij .
Publish preprocessing tasks for each chart;1

Sample some charts to train an initial model;2

while not all data points have been resolved do3

Select the best task(tuple) ti for the incoming worker w4

using the task assignment module;
Obtain the answers awi from the crowd;5

Estimate the truth t̂ij , j ∈ [1,m] using the truth6

inference module;
if all points in ti have high confidence (> α) then7

Label ti as resolved ;8

return Estimated truth of each t̂ij ;9

t3 with aw1
3 = [5, 3, 4] and aw2

3 = [6, 3, 4]. ThenO3 = {w1, w2}
and A31 = {5, 6}. Then we define the truth inference problem as
below.

Definition 3.6 (Truth Inference). For each point tij , given work-
ers’ answers set Aij , the truth inference problem is to compute
a well-estimated value t̂ij for true value t∗ij .

Then, the output of the truth inference model is an estimated
truth distribution, from which we can compute the confidence of
the estimated truth using the Confidence Checking module. If it
already has a high confidence (qualified), we do not need to assign
more tasks to save the cost and return the final inferred answer to
the requester. For those tasks that have not achieved the required
confidence (not qualified), we consider assigning tasks based on
the task assignment module defined as below.

Definition 3.7 (Confidence-Aware Task Assignment). Given an
incoming worker w, the task assignment module aims to select
a task that has not achieved the required confidence and assign
it to her, so that the quality of the task can be improved the
most.

When a worker w comes, currently, each data point in ti has
an estimated truth with a certain confidence. Given the quality of
w and already obtained answers of each task ti, we can compute
an expected quality improvement for each task and assign the one
with the highest improvement to w.

Algorithm 1 shows the pseudo-code of CROWDCHART. It first
publishes preprocesing tasks for each chart (line 1). Then a small
part of charts are sampled to be answered by the crowd workers,
so as to derive initial parameters like worker qualities (line 2).
Secondly, we use the task assignment module to select the most
appropriate task (tuple) whose quality can be improved the most
for a crowd worker (line 4). After the crowd answers the task,
we infer the truth of each data point in the tuple (line 6). If all
points in ti have high confidence, we label ti as resolved and no
longer ask ti. Otherwise, we repeat these steps until all points are
resolved.

4 TRUTH INFERENCE

In this section, we will introduce how to infer the truth of each data
point given multiple workers’ answers, considering characteristics
of tuple extraction tasks. We first discuss how to model workers

5
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quality and their answers in section 4.1. To further improve
the model, difficulties of data points are incorporated into our
framework (Section 4.2). In section 4.3, we introduce answers
alignment, which is a characteristic quality control methodology
in charts extraction task. Finally, the overall inference algorithm is
illustrated(Section 4.4).

4.1 Modeling Workers’ Answers and Quality

Workers’ answers are essential to infer the workers’ quality and
ground truth, and thus a suitable answers model of the extraction
task is necessary. Different from multi-choice tasks, the answers
of data extraction tasks are numerical values. For a numerical
task, its quality depends on how close it is to the ground truth.
For example, suppose a data point has a value 998.5. If a worker’s
answer is 1000, we take it as a good answer because they are close
even if it is not equal to the ground truth. Therefore, we propose
that the workers’ quality depends on the ratio between their answer
and the ground truth rather instead of the difference between them
because data have different scales. For example, suppose two data
points have ground truth t∗ij = 1000 and t∗i′j′ = 100 respectively.
If workers w1 and w2 provide answers aw1

ij =990 and aw2

i′j′=90 for
two points, we can obviously deduce that w1 has a higher quality
thanw2, though their differences between the ground truths are the
same. If they answer aw1

ij =980 and aw2

i′j′=98 respectively, even if
|aw1
ij − t∗ij | > |aw2

i′j′ − t∗i′j′ |, we can estimate that they have nearly
the same quality. Therefore, we use the Gaussian distribution to
model each answer given by worker w. The distribution takes the
ground truth t∗ij as its mean and uses variance to model worker
quality, i.e.,

awij ∼ N (t∗ij , φ
w
ij)

∼ 1√
2πφwij

exp(− (awij − t∗ij)2
2φwij

), φwij = (σwij)
2 (1)

where φwij is the variance and σwij is the standard deviation.
Generally speaking, if w has a good quality, then variance φwij
will be small because the answer is likely to be close to the ground
truth t∗ij . Motivated by this, we use qw to denote the quality of w
and − ln qw ∈ [0,+∞] to denote the ratio,

σwij = − ln qw × t∗ij , qw ∈ [0, 1]. (2)

Since− ln qw is a monotonous function, when qw is close to 1,
which indicates a high quality worker, the standard deviation σwij
is small because − ln qw is close to 0. If qw = 0, which means
that the worker w has an extremely low quality, the deviation
between the answer and truth approaches to infinity. Therefore,
− ln qw depicts how far the answer given by w from the truth t∗ij .
Since different charts have different scale of values on Y-axis, we
utilize the multiplication of − ln qw and the truth t∗ij to represent
the deviation. The higher the qw is, the higher probability that the
answer given by w is closed to the truth. For example, when t∗

i′ j′

= 100, qw = 0.9 (σwij ≈ 0.1 × 100 = 10), we can infer that
p(80 < awij < 120) = 0.95.

4.2 Difficulty of Data Points

The quality of workers’ answers does not solely depend on their
expertise. Different difficulty levels of the tasks should also be
considered, where several factors are taken into consideration for

difficulty estimation, including types of charts, the scale of Y-
axis and number of legends. Not surprisingly, as discussed in
section 3, some complicated charts like line charts and stacked bar
charts are challenging even for a human to extract. Also, values
along the log-scale Y-axis are always hard for some workers to
recognize. Besides these, we also take the number of legends into
consideration for difficulty estimation. Intuitively, the larger the
number of legends, the more values a crowd worker needs to
extract in each task, which leads to more workload and difficulty.

Next, we compute the difficulty of task ti of a chart C,
considering features x1

i , x2
i and x3

i , which denote the chart
classification, scale of Y-axis and legends number respectively. x1

i

is a one-hot vector with length 4, where we consider bar chart,
line chart, pie chart and stacked bar chart. For
example, x1

i = [0, 1, 0, 0]T indicates that it is a line chart. Con-
cretely, x2

i is either 1 or 0, which indicates whether the Y-axis is
log-scale or not and x3

i = m. Then, we use di = 1

1+e−
∑3
k=1

γkxk
i

to compute the difficulty of task ti, where γ denotes the weights
of different features (γ1 is a vector with length 4).

Next, we will incorporate the difficulty di into the answers
formulation in section 4.1. Obviously, the more difficult the task
is, the larger the difference between ground truth and work-
ers’ answer will be. Therefore, we can rewrite equation 2 as
σwij = −dit∗i ln qw. However, the limitation of this formulation
is that it assumes that workers’ quality is independent with the
task difficulty. The assumption may not hold in practice because
for some high quality workers, the task difficulty cannot influence
their quality, but some malicious workers will provide incorrect
answers even for easy tasks. Considering this, we propose equa-
tion,

σwij = −dτwi t∗ij ln qw, τw ∈ [0, 1]. (3)

where the parameter τw aims to model how much the task
difficulty can impact the worker w’s answer. For example, if τw is
close to 0, di will have little influence on the variance since dτwi is
close to 1, which means that the difficulty has no influence on the
variance. On the contrary, when τw is close to 1, dτwi is close to
di, indicating that the difficulty does have impact on the variance.

4.3 Answers Alignment
As illustrated in section 3, misalignment will inevitably happen
when extracting data from a large number of charts because in
many cases, the visual sequence of data points in the chart cannot
match the sequence of these legends in the text region. Especially
for line charts, the visual sequence of data points always varies
along with the X-axis due to the fluctuation of lines. Thus workers
may not be careful enough to capture the variation. Note that this
phenomenon cannot be neglected because it will influence both the
workers quality and inferred truth. For example, if the misaligned
answers are directly used to compute the ground truth, we will
derive a truth with high bias, which results in that the worker who
answered that task is estimated as a low quality worker. In order
to solve the problem, we propose a probability-based solution to
align the answers.

Recap that each task has a fixed sequence of legends extracted
from the preprocessing task, For example, for all tasks generated
from in Fig. 2(d), the sequence K = [SIGMOD, VLDB, ICDE].
According to definition 3.6, we aim to infer the truth of data
points in the task, i.e., t∗i = [t∗i1, t

∗
i2, ..., , t

∗
im] based on the

obtained answers. Given answers awi = [awi1, a
w
i2, ..., a

w
im] for task
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ti provided by w, we can generate a set of m! possible sequences
S. Each sequence si ∈ S and sij denotes the j-th answer in
sequence si.

The alignment problem is to find the sequence that is
the most likely to match t∗i . In other words, given the truth
t∗i and the worker’s variance σw, we want to compute the
probability of each possible sequence. However, since we do
not know the ground truth, we use current estimated truth
t̂i = [t̂i1, t̂i2, ..., , ˆtim] to compute the probability, p(si, t̂i) =∏m
j=1

1√
2πφwij

exp(− (sij− ˆtij)
2

2φwij
).

Since the number of legends in a chart is small (less than
5 in most time) in practice, it is not expensive to enumerate
m! sequences and select the one with the largest probability.
Therefore, we select the sequence s∗ with the largest probability
s∗ = argmaxsi∈S p(si, t̂i).

For example, given a task t̂i = [100, 80, 50], a worker
w(σwij = 5%t∗ij) provides answer awi = [55, 75, 90] and we
want to align awi with t̂i. There are 6 possible sequences with
respect to awi , (s1 = [55, 75, 90], s2 = [55, 90, 75]), s3 =
[75, 55, 90], s4 = [90, 55, 75], s5 = [75, 90, 55], s6 =
[90, 75, 55]). Take s6 as an example, p(s6, t̂i) = 0.01 × 0.04 ×
0.02, which is the largest one among s1 − s6. So we align awi as
[90,75,55].

Here we consider the cold start problem. When we start the
crowdsourcing task and obtain very few answers, the confidence
of the estimated truth is low. So it is inaccurate to align based
on them. Considering an extreme case, suppose the first answer
for task ti is misaligned. If we align the following answers based
on it, all of them will be misaligned. Therefore, for the first two
answers, we will not start the alignment operation. After that, we
will align the answers using the above probabilistic model.

4.4 Inference Algorithm
In this section, we will infer the truth and workers’ quality
based on current obtained answers using the maximum likelihood
estimation. Note that when we collect an answer, we first align
the answer and then do the inference, and thus we do not need
to consider the misalignment problem at the inference step. Given
parameters θ = {θw}, θw = {γ, qw, τw}, which will be estimated
in the M-step, the objective function is to maximize the likelihood
of workers’ answers,

argmax
θ
P (A|θ) = argmax

θ

∑
T ∗

P (A, T ∗|θ), (4)

where T ∗ = {t∗} is the truth of all the data points, which is
taken as the hidden variable. To solve this optimization problem,
we use the Expectation Maximization (EM) algorithm [13], which
iteratively computes the truth distribution T ∗ and parameters θ.
Next, we provide the details of the E-step and M-step.
Expectation Step. In the E-step, given the values of θ and the
observation Aij , we compute the posterior probability of the
hidden variable T ∗ as following,

P (t∗ij = z|Aij , θ) ∝∏
w∈Oij

P (awij |t∗ij , θw)× P (t∗ij = z)

=
∏

w∈Oij

1√
2πφwij

exp(− (awij − t∗ij)2
2φwij

)× P (t∗ij = z), (5)

where P (t∗ij = z) ∼ N (t0ij , φ
0
ij) is the priori distri-

bution of the truth t∗ij . We use average(variance) of answers
in Aij as the mean(variance) of the priori distribution, i.e.,

t0ij =

∑
w∈Oij

awij

|Aij | , φ0ij =

∑
w∈Oij

(t0ij−a
w
ij)

2

|Aij | . As equation 5
shown, P (t∗ij = z|Aij , θ) is represented as the products of some
Gaussian distributions, so it also follows Gaussian distribution,
denoted as t∗ij ∼ N (µij , φij). We use f(t∗ij) to denote the
probability density function of t∗ij . Since for Gaussian distribution,
f
′
(µij) = 0 and f

′′
(µij) ∝ φ−2ij , which can be utilized to

compute the mean and variance of the distribution of t∗ij .

µij =
t0ij
φ0ij
∗ φij +

∑
w∈Oij

awij
φwij
∗ σij

φij =
1

1
φ0
ij
+

∑
w∈Oij

1
φwij

(6)

Therefore, given the parameter θ, we can compute φwij using
equation 3. Since we do not know the ground truth t∗ij , we utilize
the estimated mean µij in the last iteration as the truth to derive
the value of φwij . Thus we obtain the distribution of the truth t∗ij .
We can see from equation 6 that the mean µij is computed by the
weighted average of workers’ answers. Intuitively, the answer of
a higher quality worker (with a small φwij) will be assigned to a
higher weight and trusted more. φij is a normalized term. Next,
we will illustrate how to utilize the truth distribution to estimate
these parameters.
Maximization Step. In the M-step, given the estimated distribu-
tion of the truth t∗ij , we compute optimal values for parameters θ
so that the expectation of the joint likelihood of the observation
(equation 7) is maximized,

Q(θ) = ET ∗ [logP (A, T ∗|θ)] (7)

=
∑
i

∑
j

Et∗ij [logP (t
∗
ij) +

∑
w∈Oij

logP (awij |t∗ij , θw)]

In equation 7, the term Et∗ij [
∑
w∈Oij logP (a

w
ij |t∗ij , θw)] =∑

w∈Oij −( 12 log 2πσwij +
(awij−uij)

2+σij
2φwij

, Similarly, the term

Et∗ij [logP (t
∗
ij)] = −( 12 log 2πσ0

ij +
(t0ij−uij)

2+σij
2φ0
ij

. And thus,

Q(θ) = −(1
2
log 2πσ0

ij +
(t0ij − µij)2 + σij

2φ0ij
)

+
∑
w∈Oij

−(1
2
log 2πσwij +

(awij − µij)2 + σij

2φwij
) (8)

Then gradient descent is utilized to find the values of θ that
lead to a locally optimal solution for Q(θ).

We summarize the process of truth inference in Algorithm 2.
Suppose a worker w provides answers awi for task ti. Then we
align those answers (line 1) and then add each answer into Aij
(line 3). Next we initialize a truth based on current answers and
previous parameters based on equation 6 (line 4). Then the EM
algorithm is applied to compute the parameters (line 6) and truth
(line 7) until converge. At last, the inferred truth t̂ij is returned,
where t̂ij = µij .
Time Complexity Analysis. For each data point tij in a task,
we have to iterate workers in Oij to complete the E-step. Since
each task contains m points, the complexity is O(m|Oij |). In the

7
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Algorithm 2: Inference Algorithm

Input: Current answers set {Ai1, Ai2, ..., Aim}, new
answers awi for task ti and current parameters θ

Output: Estimated truth t̂ij
Align answers in awi ;1

for j from 1 to m do2

Aij ← Aij
⋃{awij};3

Initialize t̂ij using θ by equation 6 ;4

while not converged do5

Update parameters θ to maximize the equation 7 ;6

Compute µij and φij of tij in task ti with updated7

parameters using equation 6;

return t̂ij ;8

M-step, we also need to loop for each data point and workers who
answer the task. Moreover, suppose the gradient descent of each
parameter takes g steps to converge and the EM algorithm takes
e steps to converge. The total complexity is O(egm|Oij |). Since
e and g are const in practice, less than 50, the time complexity is
linear to the number of answers concerning the task.

5 TASK ASSIGNMENT

In this section, we study how to select a task for an incoming
worker, where we have two problems. One is whether every task
needs to be asked. For some tasks, since they have been answered
by enough number of workers or a few high quality workers and
thus derive high confidence, we do not need to ask more. For other
tasks with low confidence, we should assign them to incoming
workers to obtain more confident results (See section 5.1). Second,
given an incoming worker w, we need to assign her a task that has
not achieved a high confidence. We aim to select the task whose
quality can be improved the most. To this end, for each task,
we estimate the expected distribution of the truth if the task is
answered by w. Based on the current estimated distribution, we
can compute a quality improvement for each task. Then we select
the best one to assign to w (See section 5.2).

5.1 Confidence-based Model for Early Stopping

Given the truth distribution of a data point t∗ij ∼ N (µij , σij)
obtained through the truth inference algorithm, we can compute
the confidence if we regard µij as the answer. We adopt the (1−
α) confidence interval for the estimated truth, where 1 − α, also
known as the confidence level, is usually near to 1 such as 90%,
95%. We will trust the answer and stop to assign questions with
respect to the task if it satisfies,

P ((1− b)µij < t∗ij < (1 + b)µij) > 1− α (9)

which gives the (1 − α) confidence interval of t∗ij as r = [(1 −
b)µij , (1 + b)µij ], where b controls the width of the interval and
is always small, like b = 0.1. For example, as Fig. 4(a) shows,
the likelihood that the truth lies in a small range(r) is low, so
we have to ask more to satisfy the above confidence requirement.
However, in Fig. 4(b), the likelihood is much higher because of
the small variance of the estimated distribution, which satisfies
the confidence requirement in equation 9. Therefore, for each data
point, if the distribution of the estimated truth satisfies equation 9,
we will not ask more to save the cost because the estimated value
has already had a high confidence. Otherwise, we will assign a

(a)

µij

µij − 10%µij

µij + 10%µij

µij

(b)

µij − 10%µij

µij + 10%µij

Fig. 4: Examples of Confidence Interval

Measure the Quality Improvement

µij

φij

φu
ij

φ̂ij

µ̂ij

t1

t2

t3

Fig. 5: Example of the Task Assignment Algorithm.
task containing this data point to an appropriate worker in order to
satisfy the confidence requirement as soon as possible. The reason
why we use a small proportion of µij (2bµij) as the confidence
interval rather than a range with fixed length is that data points
have different scales. For example, given two points with µ = 10
and µ′ = 1000 respectively and a range with fixed length 10,
obviously the likelihood P (5 < t < 15) for µ is much higher
than that of P (995 < t < 1005) for µ′. Therefore, we cannot use
a range with fixed length to measure the confidence of data with
different scales.

5.2 Task Assignment Algorithm
This section presents our approach of assigning tasks to each
incoming crowdsourcing worker. The basic idea is illustrated
in Fig. 5. Let us consider three tasks t1, t2 and t3, and the
estimated distribution of each task is shown in the left part of
the Fig. 5 2. Note that the estimated distribution is obtained by
the truth inference technique presented in the previous section,
i.e., t∗ij ∼ N (µij , φij). Now suppose that a worker u requests
for a new task. We examine each task and compute the updated
estimated distribution (in the right part of the Fig. 5) if the worker’s
answer auij is included into the task. Then, we compute the quality
improvement based on the distributions before and after including
the answer. We select the task with the most improvement on
answer quality, e.g., the first task shown in Fig. 5. To fulfill
the above process, we devise methods for distribution estimation
update and quality improvement computation, which are described
as follows.
Updated Distribution Estimation. Since auij is not known in
advance, we have to generate all possible answers according
to the current distribution, and then compute the expected dis-
tribution of the truth, denoted by t̂∗ij ∼ N̂ (µ̂ij , φ̂ij) as the

2. For simplicity, we consider each task only has one data point.
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Algorithm 3: Task Assignment Algorithm
Input: Incoming worker w, current distribution

N (µij , φij)
Output: Task t assigned to worker w.
for ti in T do1

for j from 1 to m do2

if If (t∗ij) = 0 then3

Compute the expected distribution of t̂∗ij given4
the incoming worker w.

Compute the quality improvement I(ti).5

Compute the ti with the highest quality improvement.6

return ti;7

updated distribution, where µ̂ij and φ̂ij denote the updated
mean and variance respectively. The distribution is computed by
Eauij [P (t

∗
ij |Aij

⋃{auij}, θ)].
Theorem 5.1. µ̂ij = (

t′ij
2φuij

+
t0ij
φ0
ij
+
∑
w∈Oij

awij
φwij

)∗ σ̂ij and φ̂ij =

( 1
2φuij

+ 1
φ0
ij
+

∑
w∈Oij

1
φwij

)−1

Proof 5.1. We prove the Theorem 5.1 as following,

Eauij [P (t
∗
ij |Aij

⋃
{auij}, θ)]

=

∫ +∞

−∞
P (t∗ij |Aij

⋃
{z}, θ)P (auij = z)dz

Based on equation 1, we know that auij ∼ N (t∗ij , φ
u
ij). Since

we do not know the truth, we use t̂ij and φuij to generate the
answer of the incoming worker u. Thus, the above equation
equals to (c denotes a const in the equation),

1√
2πφuij

exp(− (z − t∗ij)2
2φuij

)
1√
2πφuij

exp(− (z − t̂ij)2
2φuij

)dz

= −c× exp(−
∑
w∈Oij

(t∗ij − awij)2
2φwij

)×

∫ +∞

−∞
exp(− (z − t∗ij+ ˆtij

2 )2 +
(t∗ij− ˆtij)

2

4

φuij
)dz

Since
∫ +∞
−∞ exp(− (z−

t∗ij+ ˆtij
2 )2

φuij
)dz is a const, we have,

−c× exp(−
∑
w∈Oij

(t∗ij − awij)2
2φwij

− (t∗ij − t̂ij)2
4φuij

)

In order to obtain the mean and variance, we use the similar
method as equation 6 to compute the derivative. Then we prove
theorem 5.1.

Quality Improvement Computation. In this step, we select the
most appropriate task for the incoming worker u considering the
quality improvement. Since each task contains m data points,
we need to take the quality improvement of all of them into
consideration. For each data point, we use the entropy function
[37] to measure the uncertainty of the estimated truth, i.e.,
H(t∗ij) = 1

2 ln(2πeφij). Considering all data points in task ti,

the entropy is computed as H(t∗i ) =
∑m
j=1H(t∗ij)(1− If (t∗ij)),

where If (t∗ij) = 1 if t∗ij satisfies equation 9 and 0 otherwise. Simi-
larly, given an incoming worker u, the updated entropy of truths in
task t∗i is denoted as H(t̂∗i ). H(t̂∗i ) =

∑m
j=1H(t̂∗ij)(1− If (t∗ij))

and H(t̂∗ij) =
1
2 ln(2πeφ̂ij). The entropy captures the amount of

inconsistency, i.e., the lower H is, the more consistent the answers
are, and the higher quality will be achieved.

Overall, for task assignment, we can leverage the coming
worker w’s quality and the task ti’s current distribution N to
estimate the expected distribution N̂ using theorem 5.1. We
use I(ti) = H(t∗i ) − H(t̂∗i ) to denote the expected quality
of improvement if worker u answers the task ti. Thus the
task with the highest improvement in quality is selected, i.e.,
argmaxti∈T I(ti).

Algorithm 3 shows the algorithm of task assignment. Given
an incoming worker, we need to select the task that can bring the
most quality improvement and assign to her (line 6). To this end,
we enumerate every task and compute the improvement (line 5).
When computing each task, we do not need to consider the data
point(s) that have satisfied equation 9 in it(line 4). Apparently, for
the task that all data points in it have satisfied equation 9, we do
not assign it anymore.
Time Complexity Analysis. In the assignment algorithm, we have
to iterate all unresolved tasks and select the best one, so the
complexity isO(m|T |). For each task, given the incoming worker
w, we will compute the expected distribution using theorem 5.1,
so as to derive the quality improvement. Therefore the overall
complexity is O(vm|T |), where v is the average number of
answers for each task. Since v and m are usually small in practice,
less than 10, the complexity is linear to the number of tasks.

6 EVALUATION

We have implemented CrowdChart using Python 3.6 on a Ubuntu
server Intel 2.4GHz Processor and 32GB memory on top of Crow-
dOTA [41], which is an online task assignment framework built
on AMT. This section evaluates the performance of CrowdChart.
In Section 6.1, we introduce our two real datasets to be evaluated.
Then some basic experimental settings are discussed in Section
6.2. Next, we discuss the experiment results of our truth inference
and task assignment module respectively in Sections 6.3 and 6.4.
Then, we evaluate effect of some parameters in Section 6.5 and
investigate efficiency in Section 6.6.

TABLE 1: Datasets.
C #Data points #Line Chart #Bar Chart #Pie Chart

Paper 75 890 40 35 0
Web 180 2550 110 50 20

6.1 Datasets
We use two real datasets to evaluate our approach, the details of
which are summarized in Table 1. (1) Paper: We extract 75 charts
(including 890 data points in total) from several research papers,
which consist of 40 line charts and 35 bar charts (including 5
stacked bar charts). The ground truth is the data used to draw those
charts. (2) Web: We crawl 180 charts from the web (including
2550 data points in total), which include 110 line charts, 50
bar charts (including 8 stacked bar charts) and 20 pie charts.
Specifically, for ease of collecting ground-truth, the charts are
crawled from the websites with meta-data [2], [3], [4], [5].

6.2 Experimental Settings
Crowdsourcing settings. We conduct experiments on the popular
crowdsourcing platform, Amazon Mechanical Turk (AMT). As
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task assignment is not natively supported by AMT, we leverage
the framework of CrowdOTA [41], which utilizes the “External
Questions” function of AMT, builds a web server and interacts
with AMT using the APIs for assigning tasks. For preprocessing
tasks, we include the three kinds of task in a single human intel-
ligence task(HIT) and pay $0.1 for the HIT. For tuple extraction
tasks, an HIT is used to extract one tuple ti like Fig. 2(d), which
costs $0.05m, wherem is the number of values in ti. For example,
we set the price of task shown in Fig. 2(b) as $0.15.
Preprocessing tasks. Before extracting tuples, we first publish all
preprocessing tasks to the crowd. We report the result quality of
these tasks here. On both datasets, the result quality of chart clas-
sification task and y-axis classification task achieves an accuracy
of 99%. This validates our claim that such tasks are very easy
for workers. For legend identification task, the accuracy on both
datasets is 95%. The main errors are that workers miss one or two
characters for some legend keys when transcribing the text, which
will not affect the following tuple extraction much.
Warm-up step. To cope with the cold start problem, we first pick
a proportion(20%) of tasks and assign each of them to 5 workers.
After that, we use the truth inference approach in section 4 to
infer the truth of those questions as well as the parameters set θ. If
some of tasks have satisfied the confidence requirement, we return
it to the requester. For remaining tasks, we combine them together
with other 80% tasks to the next online truth inference and task
assignment step. In this step, we initialize the parameters using θ
obtained in the warm-up step and update them with online process
going. Note that although we have the warm-up step, we can not
avoid the cold start problem completely. This because the tasks
may be requested by new workers who are not involved in the
warm-up step. We assign the average of workers’ quality (qw, τw)
obtained in the training step as the quality of new workers, which
can be updated during the inference process.
Evaluation metrics. In the evaluation, we mainly compare the
cost and quality of CrowdChart with other baselines. (1) Cost.
We utilize the monetary cost to evaluate the cost of different
approaches. Note that, for different methods, the cost used for
preprocessing tasks is the same, and thus we do not report this
part. (2) Quality. For quality, we use the metric Mean Normalized
Absolute Distance MNAD [24] to measure the overall absolute
distance from each approachs results to the ground truths, which
indicates how close the results are to the ground truths. As
different data values may have different scales, we normalize the
distance based on the method proposed in [24].
6.3 Evaluation on Truth Inference
This section evaluates the truth inference module in CrowdChart,
compared with the following state-of-the-art approaches with the
focus on inferring the truth of numeric data.

(1) Average (AV): Average is a simple and intuitive method to
tackle continuous answers. Given several answers of a data point
by multiple workers, it computes the average as the truth.

(2) GTM [42]: GTM is a truth discovery framework for numeric
data, which considers the source reliability (workers’ quality) and
utilizes the EM algorithm to infer the truth.

(3) T-Crowd [36]: T-Crowd is a crowdsourcing framework
for tabular data, including both categorical and numeric data. In
our scenario, we do not have categorical data, so we only compare
with its technique designed for continuous data.

We compare CrowdChart with AV, GTM and T-Crowd re-
spectively. For a fair comparison, we utilize the same assignment
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module to assign tasks for all methods and leverage their different
truth inference approaches to infer the truth. Specifically, as GTM
and T-Crowd also use Gaussian distribution to model the truth,
we can also compute the confidence using equation 9. For AV, we
use the mean and variance of the answers of a task to compute a
Gaussian distribution. Then, we apply the same task assignment
method on them, including the early-stopping strategy. We set
β = 0.1 and vary the confidence level from 0.85 to 0.95 to test
the performance.

Figures 6 show the evaluation on crowdsourcing cost, which
is the monetary cost defined in the evaluation metric above. We
can see from Fig 6(a) that CrowdChart saves more than two
times of cost compared with other state-of-the-art works when
achieving the same confidence level on the Paper dataset. For
example, when the confidence level is 0.9, CrowdChart incurs
a cost of $101 while AV, GTM and T-Crowd use $320, $235
and $234 respectively. This because CrowdChart will align the
answers, which narrows down the variance of inferred answers
and improve the workers’ quality estimation. Thus CrowdChart
can achieve the confidence requirement with much less number of
tasks. Moreover, we can see that with increase of the confidence
level, the cost grows up. This is reasonable because we should ask
more to keep higher confidence. Similar observation can also be
found on the Web dataset (Fig. 6(b)).

Fig. 7 shows the result on quality. When confidence level is
0.9, we can see from Fig. 7(a) that on dataset Paper, Crowd-
Chart achieves the best quality, with the MNAD of 0.74, which
improves 30% compared with T-Crowd with the second smallest
MNAD (1.1). CrowdChart also outperforms GTM a lot because
CrowdChart considers the answers alignment and task difficulty.
For instance, when the confidence level is 0.95, CrowdChart has an
MNAD of 0.58 while AV and GTM are 1.23 and 1.03 respectively.
AV has the worst quality because it does not consider the workers’
quality and task’s difficulty. GTM performs better than AV because
it considers the task’s difficulty. The significant improvement of
CrowdChart is attributed to the truth inference techniques, such as
answer alignment and worker model.

6.4 Evaluation Task Assignment

In this section, we evaluate the task assignment module in Crowd-
Chart comparing with several baselines.
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(1) Assign three questions per task(AS): AS is an algorithm
that assigns each task to three different workers without consider-
ing the confidence.

(2) Randomly assignment (Random): Random computes the
confidence of the estimated truth of each task and it adopts an
early-stopping strategy to stop to assign tasks to high confidence
task. For those tasks are not terminated, Random assigns tasks
randomly.

(3) Askit! [7]: Askit! computes the entropy of each task to
measure the uncertainty of it, and then assign the task with the
highest uncertainty to the incoming worker.

For fair comparison, we use the same truth inference algorithm
in CrowdChart to infer the truth and test different task assignment
strategies. We set b = 0.1, confidence level as 0.9 and vary the
cost (number of asked questions) for evaluation.

Fig. 8 shows the performance on quality and cost in task
assignment. We can see from Fig. 8(a) that on the Paper dataset,
when the cost is low, the methods have a similar MNAD. For
example, when the cost is $60, they have MNAD around 1.47. This
because we have not assigned many tasks and the advantages of
our algorithm have not been revealed. However, with the number
of obtained answers accumulating, e.g., when the cost is $101,
CrowdChart early stops because it has achieved the confidence
requirement. At that time, CrowdChart achieves an MNAD of
0.74, while Random, Askit! and AS have an MNAD of 0.86,
1.04 and 1.18 respectively. Askit! and Random perform better
than AS because they consider the uncertainty and the confi-
dence respectively. CrowdChart further outperforms Askit! and
Random because it assigns the tasks that can improve the quality
most to the workers. Random achieves the quality requirement
when the cost is $101 but has a higher MNAD than CrowdChart
when it stops with the same confidence level (0.9) because it does
not consider any task assignment strategy about whom to ask.
Askit! and AS achieve further higher MNAD with even more
costs. On Web dataset, CrowdChart still outperforms others. For
example, when the cost is $278, CrowdChart achieves the quality
requirement and has an MNAD of 1.43 while Random, AS and
Askit! are 2.18, 2.48 and 2.96 respectively.

6.5 Effect of width of confidence interval (b)
In this part, we evaluate the influence of parameter b on Crowd-
Chart in Fig. 9 and 10. We can see that in Fig. 9(a), on Paper
dataset (the confidence level is 0.9), CrowdChart costs more
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when b = 0.05 ($167) compared with b = 0.1 ($99), because
we need to ask more in order to achieve a higher confidence
requirement. Moreover, on Web dataset, we can see that when
the confidence level is 0.95, CrowdChart costs $325 if b = 0.1
while $546 if b = 0.05. When it comes to the quality, we can see
from Fig. 10(a) that CrowdChart achieves a higher quality when
b = 0.05 because it requires the estimated truth more closer to
the ground truth. For example, when the confidence level is 0.95,
on Paper dataset, CrowdChart has MNAD of 0.43(b = 0.05)
compare with 0.58(b = 0.1). Similarly, on Web dataset, when the
confidence level is 0.95, we can see that CrowdChart costs about
two times more when b = 0.05 than b = 0.1 and the quality is
improved from 0.65 to 0.62. Based on the observations, we choose
b = 0.1 as its default value, because it can save much cost while
merely damaging the quality.

6.6 Evaluation on Efficiency

We evaluate the efficiency of our truth inference module in
Fig. 11(a), compare with GTM and T-Crowd. We set b = 0.1 and
the confidence level as 0.9 to evaluate the efficiency. We record
the time of inferring the truth of each data point, compute the
average and report the results. The reason why we do not compare
with AV is that it just computes the average, which is a const
time complexity. We can see from the figure that our algorithm
can infer the truth of each data point within 10ms, which has a
similar efficiency with GTM and T-Crowd. For task assignment,
we evaluate the efficiency of assigning each online task. AS and
Random assign tasks randomly so we do not compare with them.
We can see from Fig. 11(b) that CrowdChart can assign a task
within 0.5 second, which is similar to that of Askit!. Therefore,
our algorithm has a high efficiency and can be used in practice
scenarios.

7 CONCLUSION

In this paper, we propose a crowdsourced chart data extraction
framework CrowdChart, which aims to extract the underlying data
from the charts into a relational table, including the schema of
rows and columns . We use well-designed tasks to interact with
the crowd workers. To improve the quality, we design a truth
inference model to derive accurate answers and workers’ quality
simultaneously. Moreover, we develop effective task assignment
and early-stopping techniques to reduce the monetary cost. Finally,
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we evaluate our approach on real datasets on AMT and the results
demonstrate its superiority over existing methods.
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