
The VLDB Journal (2022) 31:753–777
https://doi.org/10.1007/s00778-021-00714-0

REGULAR PAPER

Interactively discovering and ranking desired tuples by data
exploration

Xuedi Qin1 · Chengliang Chai1 · Yuyu Luo1 · Tianyu Zhao1 · Nan Tang2 · Guoliang Li1 · Jianhua Feng1 ·
Xiang Yu1 ·Mourad Ouzzani2

Received: 26 February 2021 / Revised: 19 October 2021 / Accepted: 26 October 2021 / Published online: 18 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Data exploration—the problem of extracting knowledge from database even if we do not know exactly what we are looking
for —is important for data discovery and analysis. However, precisely specifying SQL queries is not always practical, such
as “finding and ranking off-road cars based on a combination of Price, Make, Model, Age, Mileage, etc”—not only due to
the query complexity (e.g.,the queries may have many if-then-else, and, or and not logic), but also because the user typically
does not have the knowledge of all data instances (and their variants). We propose DExPlorer, a system for interactive data
exploration. From the user perspective, we propose a simple and user-friendly interface, which allows to: (1) confirm whether
a tuple is desired or not, and (2) decide whether a tuple is more preferred than another. Behind the scenes, we jointly use
multiple ML models to learn from the above two types of user feedback. Moreover, in order to effectively involve human-in-
the-loop, we need to select a set of tuples for each user interaction so as to solicit feedback. Therefore, we devise question
selection algorithms, which consider not only the estimated benefit of each tuple, but also the possible partial orders between
any two suggested tuples. Experiments on real-world datasets show that DExPlorer outperforms existing approaches in
effectiveness.

Keywords Data exploration · SQL query · Ranking · Decision · Human-in-the-loop

B Chengliang Chai
chaicl15@mails.tsinghua.edu.cn

B Guoliang Li
liguoliang@tsinghua.edu.cn

Xuedi Qin
qxd17@mails.tsinghua.edu.cn

Yuyu Luo
luoyy18@mails.tsinghua.edu.cn

Tianyu Zhao
zhaoty17@mails.tsinghua.edu.cn

Nan Tang
ntang@hbku.edu.qa

Jianhua Feng
fengjh@tsinghua.edu.cn

Xiang Yu
x-yu17@mails.tsinghua.edu.cn

Mourad Ouzzani
mouzzani@hbku.edu.qa

1 Department of Computer Science and Technology, Tsinghua
University, Beijing, China

2 Qatar Computing Research Institute, HBKU, Doha, Qatar

1 Introduction

We study the problem of interactive data exploration, for the
scenarios that a user needs to find desired and ranked tuples,
but the query intent is hard to precisely specify. This is com-
mon in practice, for both non-experts who cannot write SQL
queries and scripts, and experts who are not familiar with the
data. Adding to the complexity is that the query intent may be
complicated, e.g.,finding tuples that satisfy a combination of
many if-then-else, and, or and not conditions, and are ranked
by a weighted function over multiple attributes.

Let DE denote the general problem that discovers and
ranks tuples, DE-Decision a special case of DE where users
only want desired tuples (without ranking), and DE-Ranking
another special case where users want the ranking over all
tuples. Existing works either only focus on finding desired
tuples [14,17,28,53,68,70,75], i.e.,theDE-Decisionproblem,
or only aim to rank targeted tuples [9,56,72], i.e.,the DE-
Ranking problem. Therefore, we propose DExPlorer to
interactively discover and rank tuples by data exploration.
The main difference between this work and those existing
works is how to holistically solve the general DE problem,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00714-0&domain=pdf
http://orcid.org/0000-0002-1398-0621

754 X. Qin et al.

Table 1 Comparison with the state-of-the-art. User Input—(K): Keywords, (EH): Examples Offered by the Human, (ES): Examples Offered by
the System, (P): Partial Orders, (PR): Predicates

Project Input DE-Decision DE-Ranking DE Supported special cases QRE ML

DISCOVER [27] (K) � Only find a small number of interesting tuples

SQLSynthesizer [75] (EH) � � � Only simple ranking function �
SQuID [17] (EH) � Does not support the “or” predicate �
AIDE [14] (ES) � �
Huang et al. [28] (ES) � Does not support the “or” predicate �
Chaudhuri et al. [9] (P) � Only rank categorical attributes

Qian et al. [56] (P) �
Xie et al. [72] (P) � Only find top-1 result

Mishra et al. [51] (PR) � Refine query to satisfy cardinality constrain

Y. Weiss et al. [70] (EH) � �
TALOS [67,68] (EH) � Multiple inferred queries are ranked �
Li et al. [34] (EH , ES) � �
FastQRE [31] (EH) � Multiple inferred queries are ranked �
S4 [55] (EH) � Multiple inferred queries are ranked �
Zhang et al. [74] (EH) � �
PALEO [53,54] (EH) � � � Can only support the “and” predicate �
DExPlorer (K , ES, P) � � � �

instead of treating DE-Decision and DE-Ranking separately,
by minimizing the interactions with users.
Our methodology We propose DExPlorer with the follow-
ing main features. [Interactivity.] DExPlorer is designed
as an interactive system, because providing a set of represen-
tative, unbiased, and sufficient samples in one shot is hard.
[Usability.] It offers an easy-to-use interface for any user,
which gives a list of tuples and allows two simple operations
“click” and “drag” for the user to provide true/false tuple
labels and partial orders between tuples. [Capability.] In
order to infer (possibly) complicated query intent, we pro-
pose to jointly train several ML models instead of guessing
SQL queries, along the same line of [28], because tightly
specifying conditions in SQL queries in data exploration
might be hard. More specifically, we use a random forests
[38] to infer desired tuples, and a hybrid ranking model com-
bining LambdaMART [71] and ranking SVM to rank tuples.
[Effectiveness.] We devise novel question selection algo-
rithms that jointly estimate the benefit of soliciting feedback
from both tuple labeling and partial-order labeling.
Contributions Our contributions are summarized below.

(1) We present DExPlorer that iteratively trains ML mod-
els and on-the-fly predicts result for discovering and
ranking tuples with the users. (Section 4)

(2) Wepresent a hybrid decision and rankingmodel for ques-
tion selection to minimize human cost. (Section 5)

(3) We describe methods to handle two special cases: the
user wants only desired tuples, or only ranked tuples.
(Section 5.3)

(4) We conduct extensive experiments to show the effective-
ness of DExPlorer. (Section 7)

2 Related work

Table 1 compares different methods for data exploration, and
we mainly categorize them to the following three categories:
Keyword-based tuple search allows users to get interesting
tuples by issuing keywords on relational databases without
knowing the schema of databases (i.e.,the input type is (K)

in Table 1). The language reflective SQL [50] is an exten-
sion of SQL, which can be used to search on the relational
databases as in a web search engine. DISCOVER [27] is a
development of reflective SQL which can support keyword
queries on multiple tuples. There have also been many works
[19,26,37,39–48,58–60,66,69] on improving the efficiency
and effectiveness of keyword search results.

DExPlorer differs from keyword search in the following
aspects: (1) It can refine the query results by further interac-
tionwith the system,while keyword search provides one-shot
answers. (2) It can capture complex combination of predi-
cates, which are hard to express using keywords. (3) It ranks
tuples by users’ hidden ranking intent, while keyword search
ranks tuples by the relevance/proximity of keywords.
Query-by-example QBE [49] either infers an SQL query Q
[17,53,55,63,68,70,74], which is a query reverse engineering

123

Interactively discovering and ranking desired tuples by data exploration 755

(QRE) approach, or learns a machine learning (ML) model
M [14,28], which is aML-based approach, over a database D
using input tuple examples. Based on input tuple examples,
QRE approaches try to infer Q such that Q(D) is equal (or
similar) to the input positive examples; ML approaches try
to train a model M such that M can correctly classify input
positive and negative examples.

The input tuple examples can be classified to two types:
(1) examples offered by the human (denoted by (EH) in
Table 1): the tuple examples are provided by users [17,31,53–
55,67,68,70,74,75]; and (2) examples offered by the system
(denoted by (ES) in Table 1): the tuple examples are provided
by the data exploration system and users only need to label
them [14,28,34].

DExPlorer differs from existing QBE approaches in:
almost all existing QBE approaches only focus on DE-
Decision. Besides DExPlorer, only SQLSynthesizer [75]
and PALEO [53,54] can discover an SQLquerywith ranking.
But SQLSynthesizer [75] can only support simple (hier-
archical) ranking functions such as ORDER BY attribute
year first and then ORDER BY attribute kilometer; PALEO
[53,54] requires the user to specify the column that the input
tuples are sorted by. Besides, the input types of SQLSyn-
thesizer and PALEO are (EH). No existing approach can
support a combination of selection conditions and a more
natural (but maybe more complicated) ranking function such
as −0.018 × price + 0.982 × power P S with input type
(ES), which is more user-friendly and suitable for the explo-
ration scenario compared with (EH), because users are not
familiar with the database which is to be explored.
Ranking database tuples There have been works on tuple
ranking: Chaudhuri et al. [9] rank categorical SQL query
results based on intuitions inferred from past workloads,
which cannot support ranking on both categorical and
numeric attributes. Qian et al. [56] and Xie et al. [72] rank
tuples by computing a weighted sum score for each tuple,
and the weight vector is learned from users’ labeled partial
orders, and the input of them are partial orders for tuple pairs,
i.e.,the input type is (P) in Table 1. DExPlorer supports
more general cases than the above approaches, as shown in
Table 1.

3 Problem statement

Informally speaking, given a relational tableT , the userwants
to find a subset R ⊆ T , and tuples in R are ranked.

In practice, a user’s query intent might be formulated as
either an SQLquery,machine learning (ML)models, or some
specific logic. Generally speaking, we want to infer/learn a
method/model f () as the proxyof a user’s query intent,where
f (T) returns the ranked list R′ that is close to R.

Example 1 Suppose a user wants a manual petrol car that is
sold after year 2010, not provided by commercial sellers,
and its brand can be either BMW with price ≤ 10000, or
Volkswagen with price ≤ 8000. Moreover, assume that the
user wants all cars to be ranked, e.g.,using a weighted sum
function:−0.018× price+0.982× power P S. That is, the
query intent could be expressed as Q1 below:

SELECT * FROM Car

WHERE seller != ”commercial” AND year ≥ 2010

AND gearbox=”manually” AND fuelType=”petrol”

AND ((brand = ”bmw” AND price ≤ 10000) OR

(brand = ”volkswagen”AND price ≤ 8000))

ORDER BY -0.018 ∗ price + 0.982 ∗ powerPS DESC;

Q1

Example 1 shows a user’s query intent may be: (1) hard
to specify: there might have complicated predicates in the
WHERE clause and it is almost impossible tomanually spec-
ify the weighted sum function with correct parameters in the
ORDER BY clause, and (2) hard to infer: no existing work
(see Table 1) can effectively infer such a query, not to say
more complicated cases.

Remark Note that we do not request a user to know exactly
how the SQL (i.e.,Q1) is written, because the user may not
be an expert and even not know SQL at all. The user only
needs to know whether a tuple is desired and which tuple
is preferred. For ease of representation, we assume that the
user’s intent can be expressed through an SQL query Q1,
and we write Q1 to help the reader to understand the user’s
intent.

User operations We allow two user operations:

(1) true/false labeling: the user may label a given tuple as
true(desired) or false(not desired); and

(2) a partial order: given two tuples ti and t j , the user might
tell which tuple is more preferable.

User questionsA question I is a list of k tuples, which solicits
two types of labels from a user:

(1) decision: the user will split I into three disjoint sets of
tuples:D+ with true labels,D− with false labels, andD?

meaning unknown. Let D be the set of all tuple labels,
i.e.,D = D

+ ∪ D
− ∪ D

?.
(2) ranking: rank (partial) pairs of tuples in D+, which gets

a set R of partial orders. Implicitly, any tuple ti ∈ D
+

is more preferred than any tuple t j ∈ D
−, and no need

to rank two tuples in D
−, denoted by tx ≡ ty for any

tx , ty ∈ D
−.

Example 2 The table in Fig. 1 shows the labeling examples
based on Q1 in Example 1. (1) The user can annotate the

123

756 X. Qin et al.

Fig. 1 An overview of DExPlorer

tuples as desired or undesired, e.g.,D+ = {t1, t2, t3, t4} and
D

− = {t5, t6}. (2) The user can specify that which cars are
more preferred for tuples in D

+, either through a total order
such as (t1
 t2
 t3
 t4) or a set of partially ordered lists
such as (t1
 t2
 t3) and (t1
 t4).

Problem statement Given a table T , a parameter k (i.e.,the
number of tuples to show in each question), and a budget n
for the number of questions, the problem of interactive data
exploration (IDE) studied in our paper is to iteratively ask
n questions {I1, . . . , In} (|Ii | = k for i ∈ [1, n]) to the user,
and infer a ranked set R of tuples based on the user feedback.
Two research challenges In order to solve IDE, there are
two main research challenges: (1) Answer Inference: how to
infer R based on the user feedback for I1, . . . , In? (Sect. 4)
(2) Question Selection: how to select a question Ii in the i-th
iteration such that the human cost is minimized? (Sect. 5)
Two special cases (1) IDE-Decision: the user has no prefer-
ence between desired tuples; and (2) IDE-Ranking: the user
only wants to rank all tuples.
Data exploration on multiple tables If users want to conduct
data exploration on multiple tables, they should first specify
which tables are of interest to them (and how to join these
tables if there are multiple joining paths), and then DEx-
Plorer joins these related tables. Then users can perform

data exploration on this joined table. Our solution mainly
focuses on inferring the decision condition and ranking cri-
teria of an SQL query, rather than inferring the join graph
of an SQL query (although it is an important topic in many
QRE approaches [31,55,68,74]). For simplicity, we discuss
our solution for one table in the rest of the paper.

4 Overview ofDExPlorer

4.1 System overview (Fig. 1)

Front-end It interacts with the user in multiple iterations
until user budget is used up or the answer cannot be improved.
At each iteration, it provides a question I with k tuples, on
which two operations are permissible: (1) “click” to annotate
a tuple to be either true or false; and (2) “drag” to annotate
that one is ranked higher than another.

The answers annotated by the user are then transformed
to a set of true/false labels of tuples in I, and a setR of partial
orders between pairs of tuples in I.
Back-end In the i-th iteration, the user will provide a set Di

of true/false labels and a set Ri of partial orders, the back-
end of DExPlorer needs to address two problems: answer
inference and question selection.
Answer inference Given the user feedback from all i iter-
ations, i.e.,{D1,D2, . . . ,Di } and {R1,R2, . . . ,Ri }, it is to
infer the (ranked) result R.
Question selection It is to select a set Ii with k tuples for the
user to annotate in the i-th iteration.

The major challenge is that question selection for IDEis a
bi-criteria problem that needs to estimate the true/false label-
ing and the partial-order labeling between tuples.
Termination The process will terminate, either if the user
budget is used up, or the back-end inference will converge.

In the following, we will focus on answer inference. The
details for question selection will be discussed in Sect. 5.

4.2 Answer inference

Note that if the function f () can be expressed by a simple
SQL query, then using previous methods (e.g.,SQLSynthe-
sizer [75]) is enough. In practice, nevertheless, it might be
hard to capture a user’s query intent by simple SQL queries.
Consequently, ML-based methods (e.g.,using decision trees
in [28]) have been used for the IDE-decision problem, and
different mathematical models [56,72] have been studied
to model the IDE-ranking problem. As discussed earlier in
Table 1, existing methods fall short of modeling many real-
world cases. Hence, we advocate to jointly use several more
advanced ML models for interactive data exploration.
A Naïve solution A straightforward solution is to learn a
function f (T) (for example, a learning-to-rank [24] model

123

Interactively discovering and ranking desired tuples by data exploration 757

such as ranking SVM [30]) that can rank and score tuples
in T (e.g.,〈(t1, 0.99), (t2, 0.98), . . . , (tn, 0.04)〉) and select
a threshold (e.g.,θ = 0.8) to separate desired and unde-
sired tuples—all the tuples above the threshold are returned
as desired tuples and ranked based on their corresponding
scores.

Example 3 Suppose a user wants to buy a BMW car, and
ranks them by a weighted sum function: −0.018 ∗ price
+0.982 ∗ powerPS, the ground truth Q can be expressed as:

SELECT * FROM Car WHERE brand = ”bmw”

ORDER BY -0.018 ∗ price + 0.982 ∗ powerPS DESC;
Q2

Let’s use ranking SVM to rank tuples, we may get weights
w1, w2 for attribute price and powerPS, and w3 for one-hot
attribute of the value bmw, that is, the score of a tuple t is
w1 × t[price] + w2 × t[powerPS] + w3 × t[brand=bmw].
However, if there is an Audi car with a high w1 × t[price] +
w2 × t[powerPS] value, it may be ranked high although it is
not desired.

Example 3 shows that although ranking SVM (or other
learning-to-rank models) can be used, it is not ideal to handle
the combined cases of both decision and ranking. Similarly,
a decision-only model (e.g.,a binary classifier) is also not
ideal.

Next, we will discuss how DExPlorer does the decision
answer inference, the ranking answer inference, and then the
hybrid approach of combining them for the IDE problem.
Decision inference Essentially, it is a binary classification
problem—deciding whether a tuple is desired or not. There
are several choices: decision tree (DT), random forests (RF)
[38], or support vector machines (SVM) [11]. [14] uses DT
for IDE-Decision. However, as observed by [28], DT is not
ideal to capture complex predicates.

DExPlorer employs RF for three reasons.
(1) RF, a collection ofmanyDTs, ismore robust to capture

complicated cases (e.g.,with if-then-else, and, or and not)
[65] and better prevents overfitting, compared with DTs.

(2) In some cases, RF, with shallow decision trees and a
few branches, is still interpretable. That is, using RF does
not sacrifice too much interpretability. By extracting true
branches of the trees in the random forest, transforming the
conditions in the branches to predicates, and merging predi-
cates of these true branches by conjunction or, we can return
an SQL corresponding for current inferred results.

Example 4 Figure 2 shows an example of RF. There are two
trees in the forest. The two pink paths in the trees are true
branches. The left child of a node does not satisfy the con-
dition of the node, and the right child of a node satisfies the
condition of the node. By merging predicates of the two true
branches by conjunction or, we can return an SQL query Q3.

Fig. 2 Explainability of Random Forest

SELECT * FROM Car

WHERE (brand = “bmw” AND price ≤ 10000) OR

(brand = “volkswagen”AND price ≤ 8000);

Q3

Remark The interpretability remains to be an issue when the
inferred random forest is large and needs to be studied sepa-
rately in the future work.

(3) As will be seen shortly in question selection (Sect. 5),
RF, which outputs a vector with 0’s and 1’s (each DT in an
RF will output either 0 or 1 for one input), is a better choice
than SVM that gives a single value for computing diversity
between tuples, an important feature for question selection.
Ranking inference We consider to support linear weighted
ranking functions, because in many applications, especially
in databases with numeric values, a weighted sum among
multiple attributes is widely used to model user preferences,
which is a common assumption in many data exploration
systems [30,52,56,72,73]. In practice, the ranking function
may not be linear. But it is common to build a linear function
as an approximation of reality, and a linear function often
returns good enough results [56], which can also be proved
in the experiments.

The ranking problem inDExPlorer is to learn a function
g(t).We employ ranking SVM [30,56] as the basic model for
two reasons. (1) The scoring function used to rank tuples can
be roughly captured by a linear function, i.e., g(t) = w · t,
where w is a weight vector quantifying the preference and
importance of attributes, and t is the feature vector of tuple t .
Ranking SVM is a natural choice for this case. (2) Compared
with complicated model like RankNet [1], ranking SVM can
avoid overfitting by using a small number of training data.

However, one drawback of using a lightweight model,
e.g.,Ranking SVM, is that it needs sophisticated feature engi-
neering. One way to combat this is to use another model to
capture more distinguishing features, which is inspired by a
classical solution for Click-Through Rate (CTR) prediction.

In many commercial IR systems [23,25], the solution for
CTR follows the GBDT + LR [25] framework, where GBDT
is gradient boosting decision tree and LR is linear regression.
More specifically, the CTR problem is a binary classification
problem to predict whether an advertisement will be clicked
by a user. In the model, the sub-model GBDT can capture

123

758 X. Qin et al.

distinguishing features combination and LR is used to make
prediction based on these features.
LambdaMART + Ranking SVM Inspired by the GBDT + LR
model, we propose a hybrid rankingmodel: LambdaMART+
Ranking SVM, where LambdaMART [71] is a tree structure
model based on the MART (Multiple Additive Regression
Tree) [18] that transforms the input features. The “Lambda”
in LambdaMART denotes a special Lambda value which is
the negative gradient in the MART algorithm. The output
of LambdaMART is then fed to ranking SVM to infer tuple
ranking.

4.3 Iteratively training and predicting

Given {D1,D2, . . . ,Di } as decision labels and {R1,R2, . . . ,

Ri } as partial-order labels, we describe how to use them to
train and predict for decision and ranking problem. Before
that, we first describe how to get the feature vector of a tuple
t .
Getting feature vector For a tuple t , it always has columns
of different data types. In this paper, we consider four
commonly-useddata types: numeric, categorical, textual, and
date. We then describe how to encode columns of different
data types of a tuple t .

– Numeric. We normalize the values in a numeric column
to [0, 1].

– Categorical. We use one-hot encoding to encode categor-
ical column values. And for a categorical column with
many distinct values (e.g.,thousands of distinct values),
we treat it as a textual column.

– Textual. We embed the strings in a textual column to
fixed-length (e.g.,128) vector embeddings. The intuition
is that: the more similar two strings are (i.e.,the dis-
tance, e.g.,Cosine distance, Edit distance, between the
two strings is small), the closer the embeddings of them
are (i.e.,the Euclidean distance between the two embed-
dings is small). Please refer to [12] for more details about
string embedding.

– Date. We split each date to three columns: year, month
and day. Then we treat the three columns as numeric
columns.

After we encode each column value of t , we concate-
nate the encodings of all column values by the order of the
columns in T , and then we can get the feature vector of t ,
denoted by t′.

Remark The encoding method for categorical attributes with
high cardinalities may not be optimal. And we would like
to explore more encoding methods for this case in the
futurework, for example, using label encoding (i.e.,randomly
assign an integer from 1 through N to a category, where N is

the number of categories, and different categories correspond
to different integers) and adding more nonlinear modules to
alleviate the problem that label encoding would bring some
orders between categorical values.

Training Algorithm 1 shows the training process of the
i-th iteration, where the inputs are the true/false labels
{D1,D2, . . . ,Di } and partial-order labels {R1,R2, . . . ,Ri }
from the 1st to i-th iteration, and the outputs are the trained
models in the i-th iteration.
(1) Decision training using RF: it trains RF using all labeled
positive tuple examples (i.e.,tuples in {D+

1 ,D+
2 , . . . ,D+

i }),
negative tuple examples (Here we include unknown tuples
into negative examples, i.e., D− = {D−

1 ,D−
2 , . . . ,D−

i } ∪
{D?

1,D
?
2, . . . ,D

?
i }. Then we obtain the model RFi (lines 1 -

3).
(2) Ranking training using LambdaMART + Ranking SVM:
Given a set of features of ordered tuple pairs Ri as train-
ing examples: (a) We first use the labeled pairwise tuples in
R = R1 ∪ R2 ∪ . . . ∪ Ri to train the LambdaMART model,
obtaining L Mi (lines 4 - 5). The training inputs of L Mi are
{(t′y, t′z, label(ty, tz)) | (ty, tz) ∈ R}, where label(ty, tz) is
the partial order of ty and tz : if ty
 tz , label(ty, tz) = 1; oth-
erwise, label(ty, tz) = 0. (b) For each tuple t (whose feature
vector is denoted as t′) appearing in R, L Mi (t) will output a
m-dimension transformed feature vector x = (x1, . . . , xm),
where m is the number of trees in LambdaMART (see
Fig. 1), and x j (j ∈ [1, m]) is the leaf node index of t′
that ends up falling in the j-th tree (lines 8–12). Let t′′
be the one-hot encoding of the transformed feature vec-
tor x (line 13). Let t be the concatenation (⊕) of t′ and
t′′ (line 14). (c) For each ordered tuple pair (ty, tz) in Ri ,
we use the enriched features (ty, tz) to incrementally train
ranking SVM, obtaining RSi (lines 15–18). The training
inputs of RSi are {(ty, tz, label(ty, tz)) | (ty, tz) ∈ R}, where
label(ty, tz) is the partial order of ty and tz : if ty
 tz ,
label(ty, tz) = 1; otherwise, label(ty, tz) = 0. (d) Finally,
the trained random forest model RFi , LambdaMart model
L Mi , and ranking SVM model RSi are returned in the i-th
iteration (line 19).

Example 5 Consider the two trees in Fig. 1 generated by
LambdaMART. The first tree has four leaves and the sec-
ond tree has three leaves. Assume that t′ = (0.8, 0.7) ends
up falling in the second and third leaf node of tree 1 and
tree 2, respectively. Thus, the transformed feature for t′ is
(1, 2), with the corresponding one-hot encoding for the first
and second features to be (0, 1, 0, 0) and (0, 0, 1), respec-
tively. Hence, t′′ = (0, 1, 0, 0, 0, 0, 1); t = t′ ⊕ t′′ =
(0.8, 0.7, 0, 1, 0, 0, 0, 0, 1).

Prediction Algorithm 1 shows the prediction process of the
i-th iteration, where the inputs are the table T and the trained
models RFi , L Mi , RSi from the training process of the i-th

123

Interactively discovering and ranking desired tuples by data exploration 759

Input: {D1,D2, . . . ,Di } and {R1,R2, . . . ,Ri }
Output: trained models RFi , L Mi , RSi
D

+ ← D
+
1 ∪ D

+
2 ∪ . . . ∪ D

+
i ;1

D
− ← D

−
1 ∪ D

−
2 ∪ . . . ∪ D

−
i ∪ D

?
1 ∪ D

?
2 ∪ . . . ∪ D

?
i ;2

RFi ← T rain Random Forest(D+,D−);3
R = R1 ∪ R2 ∪ . . . ∪ Ri ;4
L Mi ← T rainLambdaMart(R);5
m ← the number of trees in L Mi ;6
for t in R do7

t′ ← the feature vector of t ;8
x ← ();9
for j ← 1 to m do10

x j ← the leaf node index of t′ that ends up falling in the11
j-th tree of L Mi ;
x ← x ⊕ x j ;12

t′′ ← the one-hot encoding of x;13
t ← t′ ⊕ t′′;14

R
′ ← ∅;15

for (ty, tz) in R do16
R

′ ← R
′ ∪ (ty, tz);17

RSi ← T rain RankingSV M(R′);18
return RFi , L Mi , RSi ;19

Algorithm 1: Training Process for the i-th Iteration

iteration, and the output is the ranked desired tuples Ri in the
i-th iteration. The overall process is to first find the desired
tuples using the decisionmodel, and then rank them using the
rankingmodel. To be specific, (1)Decision prediction: it uses
RFi to predict each unlabeled tuple, predicting Ri as a set
of desired tuples (i.e.,these tuples that are predicted true by
RFi) (lines 1–5). For a tuple t , the input of RFi is t′. (2)
Ranking prediction: For each t ∈ Ri : (a) It uses trained L Mi

to get the enriched feature t of t (line 8 of Algorithm 2, and
lines 8–14 of Algorithm 1 show how to get enriched feature
t of t); (b) It computes a score for t using the learned weight
function w in RSi as w · t (line 9); and (c) It ranks tuples in
Ri based on their scores, and returns Ri (lines 10–11).

Input: T , trained models RFi , L Mi , RSi
Output: inferred ranked desired tuples Ri
Ri ← ∅;1
for t in T do2

label(t) ← Predict By Random Forest(RFi , t);3
if label(t) is true then4

Ri ← Ri ∪ {t};5

w ← the learned weight vector of RSi ;6
for t in Ri do7

t ← Get Enriched Feature(L Mi , t);8
score(t) = w · t;9

sort Ri by descending order of score(t);10
return Ri ;11

Algorithm 2: Prediction Process for the i-th Iteration

5 Question selection

In each user iteration, we need to select a list of k tuples
from the table T as one question I, and then the user should
provide true/false labels and the partial order labels for the k
tuples (i.e.,the input type of DExPlorer is (ES)). An inter-
active data exploration system whose input type is (ES)

should develop an algorithm to sample tuples for users to
label in each iteration such that the human cost is minimized.
To minimize human cost, existing works either (1) select
the tuples with high decision uncertainties only for IDE-
Decision problem [17,28,63], i.e.,select the tuples in which
the data exploration systems are not sure about whether they
are true/false; or (2) select the tuple pairs with high rank-
ing uncertainties only for IDE-Rankingproblem [29,56,72],
i.e.,select the tuple pairs in which the inferred ranking func-
tions are not sure about their rankings. Different from the
above works which only focus on one of IDE-Decision and
IDE-Ranking problem, DExPlorer holistically solve the
general IDE problem and consider both decision and ranking
uncertainties as well as diversity, so the question selection
problem of DExPlorer becomes challenging. There are
three challenges for the problem of IDE question selection.

Challenge 1 [Reducing Uncertainty for Decision and
Ranking.] Note that we have different models for decision
and ranking answer inference. Also, the training examples
for decision model are tuples, while the training examples
for the ranking model are tuple pairs. Therefore, the first
challenge is how to select tuples such that the uncertainty of
both the decision and ranking models is reduced.

Challenge 2 [Increasing Diversity of Tuple List.] Exist-
ing works either provide sample tuples for decision question
[17,28,63] or partial orders [2–4,8,9,35,56,72] for ranking
questions. Different from them, DExPlorer provides a list
of tuples as onequestion for oneuser iteration.Hence, besides
that the tuples in the list should reduce uncertainty of both
models, the tuples should also be diverse and representative.

Challenge 3[Interactive Question Selection.] As will be
shown shortly, considering both the decision and rank-
ing uncertainty and diversity of the selected k tuples, the
IDEquestion selection problem is NP-Hard, and existing
algorithms cannot provide the question I in interactive time.
Thus, how to design an efficient yet effective algorithm for
IDEquestion selection is important.

5.1 Uncertainty and diversity

Uncertainty is the most commonly used criteria for tuple
selection (i.e.,Challenge 1), which measures the confidence
of the current model on evaluating a question.
Uncertainty for decision questions We define the decision
uncertainty of a tuple t as the entropy of the predicted
results of all decision trees in the random forest. Suppose

123

760 X. Qin et al.

we have n trees, and m is the number of trees which pre-
dicted the tuple t as positive, we use the entropy which
is a general uncertainty sampling measure in active learn-
ing [61,62] as the decision uncertainty of tuple t : u(t) =
− (e log e + (1 − e) log(1 − e)),1 where e = m

n . By entropy,
the tuples whose probability of being predicted positive are
nearing 0.5 are more likely to be sampled, which is also a
widely used uncertainty sampling strategy for binary classi-
fication [32,33]. We denote u(t) as the decision uncertainty
of tuple t : the larger u(t) is, the larger the decision uncertainty
of t is. And we denote 1 − u(t) as the decision certainty of
tuple t .

Example 6 Suppose we have five trees in RF. For tuple t ,
assume that there are 3 trees predicting t as positive, then the
decision uncertainty of t is u(t) = −(35 log

3
5 + 2

5 log
2
5) =

0.97.

Uncertainty for ranking questions Given a pair of tuples ti
and t j , the ranking SVM model uses a hyperplane to make
decision about whether ti
 t j . It also learns a parameter
vector w, such that w · ti denotes the ranking score of tuple
ti . The higher the score is, the higher the ranking ti should be.
If the pair is above the hyperplane, i.e.,if w · ti −w · t j > 0,
then ti
 t j , and vice versa. Thus, those pairs close to the
hyperplane are the uncertain ones, i.e.,when |w ·ti −w ·t j | is
close to 0. We denote |w · ti −w · t j | as the ranking certainty
of tuple pair (ti , t j): the smaller |w · ti −w · t j | is, the larger
the ranking uncertainty of (ti , t j) is.

Example 7 Suppose we have three tuples t1, t2 and t3, a
parameter vector w = (0.5, 0.5), and k = 2. And we have
t1 = (0.8, 0.7), t2 = (0.8, 0.6), t3 = (0.6, 0.6). Then, we
compute |w · ti −w · t j | for each pair, i.e.,|w · t1 −w · t2| =
0.05, |w · t2 − w · t3| = 0.1, |w · t1 − w · t3| = 0.15. Since
the score of |w · t1 −w · t2| = 0.05 is the closest to 0 (i.e.,the
closest to the hyperplane), we choose tuples t1 and t2 for
preference labeling.

Besides selecting tuples that the decision and ranking
models are uncertain about, we should also care about the
diversity of the selected tuples (i.e., Challenge 2). Consider
two tuples with high uncertainty but with highly similar con-
tent, it is a waste of human efforts to label both of them
because only labeling one of them can produce a model that
is very likely to predict the other correctly. Naturally, we
should also consider the diversity of selected tuples.
DiversityAsimpleway tomeasure the diversity is to compute
the string similarity of each tuple pair using some prede-
fined function. However, such method does not consider the
semantic information (dynamically) incorporated by user
feedback. Thus, we can use the feature vectors produced

1 The logarithmic function takes 2 as the base, and we can know that
u(t) ∈ [0, 1] for e ∈ [0, 1], and u(t) = 1 when e = 0.5.

by RF and LambdaMART to measure the similarity of two
tuples. Let v′(t) be the prediction vector of all trees in RF for
tuple t , where the i-th element in v′(t) denotes the prediction
label (1 or 0) of the i-th tree in the random forest. Let v′′(t)
be the one-hot encoding transformed feature vector of tuple
t output by the LambdaMART sub-model (i.e., v′′(t) = t′′).

We concatenate v′(t) and v′′(t) as v(t), which is used to
compute the diversity. We denote s(ti , t j) as the similarity
of tuple pair (ti , t j): the smaller the similarity, the larger the
diversity between two tuples is. More specifically, we define
the similarity s(ti , t j) of tuple ti and t j using the Cosine

similarity: s(ti , t j) = cos(v(ti), v(t j)) = v(ti)·v(t j)

||v(ti)||×||v(t j)|| .

Example 8 Consider two tuples t1 and t2. The prediction vec-
tors of RF for t1 and t2 are v′(t1) = (1, 0, 1), v′(t2) =
(1, 1, 1). The one-hot encoding transformed features for t1
and t2 are v′′(t1) = (0, 1, 0, 1), v′′(t2) = (1, 0, 0, 1). Then
v(t1) = (1, 0, 1, 0, 1, 0, 1), v(t2) = (1, 1, 1, 1, 0, 0, 1), and
the similarity of t1 and t2 is s(t1, t2) = cos(v(t1), v(t2)) =
0.67.

We want to select k tuples with maximum uncertainties
(including decision and ranking uncertainties) andmaximum
diversities. In other words, we want to select k tuples with
minimumcertainties (including decision and ranking certain-
ties) andminimumsimilarities. Sowedefine the IDEquestion
selection problem as follows.

Definition 1 (IDEQuestion selection) Given a partially train-
ed RF model and hybrid ranking model, a table T , and a
number k, the problem is to select a set of k tuples S∗ from
T such that the following equation is minimized:

S∗ = argmin
S⊆T ,|S|=k

γ
∑

t∈S

(1 − u(t))

+ 2

(max(w · t) − min(w · t))(k − 1)
α′ ∑

ti ,t j ∈S

|w · ti − w · t j |

+ 2

k − 1
β ′ ∑

ti ,t j ∈S

s(ti , t j) (1)

there are three summations of Eq. 1. The first summation
is the sum of decision certainties, where 1 − u(t) is the
decision certainty of tuple t , and 1 − u(t) ∈ [0, 1]; The
second summation is the sum of ranking certainties, where
|w · ti − w · t j | is the ranking certainty of tuple pair (ti , t j),
w is the weight vector output by the hybrid ranking model
and |w · ti −w · t j | ∈ [0,max(w · t) −min(w · t)]; the third
summation is the sum of similarities, where s(ti , t j) is the
Cosine similarity of tuple pair (ti , t j), and s(ti , t j) ∈ [0, 1],
because there is no negative elements in v(t). There are k
elements of the first summation, and k(k−1)

2 elements of the
second and third summations. To scale the three summations
to the same order of magnitude (i.e.,same range), there is
a coefficient 2

(max(w·t)−min(w·t))(k−1) of the second summa-

tion, and there is a coefficient 2
k−1 of the third summation.

123

Interactively discovering and ranking desired tuples by data exploration 761

γ, α′, β ′ are parameters to control the proportions of decision
uncertainty, ranking uncertainty, and diversity. For example,
to make decision uncertainty and ranking uncertainty equiv-
alently important, we can set γ = 1 and α′ = 1; to make
uncertainty and diversity equivalently important, we can set
β ′ = 2.

Equation 1 is long and complex. By dividing Eq. 1 by γ

(which does not change the optimal solution of Eq. 1), and
setting α = 2α′

γ (max(w·t)−min(w·t))(k−1) and β = 2β ′
γ (k−1) , we

can get:

S∗ = argmin
S⊆T ,|S|=k

∑

t∈S

(1 − u(t))

+α
∑

ti ,t j ∈S

|w · ti − w · t j | + β
∑

ti ,t j ∈S

s(ti , t j) (2)

We use Eq. 2 for ease of description in the following.

Theorem 1 The IDEquestion selection is NP-hard.

Proof Sketch We can prove that the IDEquestion selection
problem is NP-hard by a reduction from theMaximumDis-
persion problem that is known to be NP-hard [21].

The MaximumDispersion problem is: given an undi-
rected complete graph G = (V , E), where V = (v1, v2, . . . ,

vn) contains all vertexes and each edge (vi , v j) has an asso-
ciated nonnegative weight w(vi , v j); given k ∈ {2, . . . , n},
and p ∈ 1, 2, . . . , � n

k �, the MaximumDispersion problem
is to find p disjoint subsets V1, . . . , Vp of V , with |Vq | =
k, q = 1, . . . , p, such that

∑p
q=1

∑
(vi ,v j)∈Vq×Vq

w(vi , v j) is
maximized. TheMaximumDispersion problem is NP-hard
[21]. By setting each tuple t in T as a node, the edge weight

between ti and t j as c−
(

(1−u(ti))
k−1 + (1−u(t j))

k−1 + α|w · ti − w

·t j | + βs(ti , t j)
)
, where c is a large enough number such that

all edge weights are positive, k as the number of tuples that
are selected to be labeled by users, and p as 1, we can reduce
the known NP-hard MaximumDispersion problem to the
IDEquestion selection problem. So the IDEquestion selec-
tion problem is NP-hard.

5.2 Question selection algorithms

5.2.1 AQS: an approximate algorithm

Inspired by [20], we present a 2-approximation algorithm,
denoted as AQS, for IDEquestion selection problem. The
algorithm first initializes an empty result set and calculates

a new similarity s′(ti , t j) = 1−u(ti)
k−1 + 1−u(t j)

k−1 + α|w · ti −
w · t j | + βs(ti , t j) for each tuple pair (ti , t j). It then selects
the tuple pair that has not been added to the result set and
with the least s′ scores, and adds the pair to the result set. It
iteratively runs

⌊ k
2

⌋
times. It adds another tuple to the result

set if k is odd and current result has k −1 tuples. The selected
k tuples are then returned.
TimecomplexityThe time complexity ofAQS is O(max(|T |2
L, |T |2k)), where L is the length of tuples. However, the time
to compute a question can still be long when |T | is large,
thus the above algorithm is not efficient enough to satisfy the
online question selection requirement.

5.2.2 IQS: an efficient algorithm

In the previous version [57] of DExPlorer, we propose an
efficient approximate algorithm IQS (Algorithm 3) to solve
the IDEquestion,which can return approximate result of S∗ in
interactive time. Themain idea of this algorithm is that it first
selects the tuple with the highest decision uncertainty score,
and adds it to the result set if this tuple has low similarity and
high ranking uncertainty with the current selected tuples.

We first sort T by descending order of u(t) (line 1) and
initialize the result set S as empty (line 2). Next, we iterate
each tuple ti in T , and check whether ti has high similarities
and low ranking uncertaintieswith current tuples in S (line 4–
8). If yes, we just drop it; otherwise, we add ti into S. Finally,
S is returned as the selected question with k tuples (line 11).

Input: T , k, a weight vector w, a threshold δ

Output: an approximate optimal set S
sort T by descending order of u(t), T ← [t1, t2, ..., t|T |];1
initialize S ← ∅;2
for ti in T do3

f lag ← T rue;4
for t j in |S| do5

if α · |w · ti − w · t j | + β · s(ti , t j) > δ then6
f lag ← False;7
break;8

if f lag then S ← S ∪ {ti };9
if |S| = k then break;10

return S;11

Algorithm 3: IDE Question Selection (IQS)

Time complexity We first sort T (line 1), and the time
complexity for sorting is O(|T | log |T |). The time complex-
ity to check whether ti can be added to the result set is
O(kL),where L is the length of tuples. Theouter loop iterates
up to |T | times. Therefore, the time complexity for the lines
3–8 is O(kL|T |). So the time complexity of Algorithm 4 is
O(max(|T |k log |T |, kL|T |)), which is much more efficient
than AQS.

5.2.3 IQS+: an efficient and effective algorithm

In this paper, we further propose an efficient yet effective
algorithm IQS+ (Algorithm 4). IQS+ is more effective than
IQS, but has similar efficiency performance with IQS.

Considering both uncertainty and diversity is hard due
to its high computational complexity (NP-hard). We thus

123

762 X. Qin et al.

propose to first solve the IDEquestion selection by only con-
sidering decision and ranking uncertainty (i.e., β = 0), and
then incorporate the diversity into the solution.
Question selection without diversity We set β = 0 in Eq. 2
to ignore diversity:

S∗ = argmin
S⊆T ,|S|=k

∑

t∈S

(1 − u(t)) + α
∑

ti ,t j ∈S

|w · ti − w · t j | (3)

To better illustrate the optimization problem, we first
denote S = [t1, t2, . . . , tk], where w · ti ≤ w · t j iff i ≤ j ,
then we expand the second term of Eqs. 3 to 4. Thus, we
have:

S∗ = argmin
S⊆T ,|S|=k

k∑

i=1

(1 − u(ti)) + α

k∑

i=1

((i − 1)w · ti − (k − i)w · ti)

= argmin
S⊆T ,|S|=k

k∑

i=1

(1 − u(ti)) + α

k∑

i=1

(2i − k − 1)w · ti (4)

We first introduce some notations. We sort T by w · t in
ascending order and obtain a sorted list T = [t1, t2, . . . , t|T |].
We use Tm to denote the prefix of list T with length
m, i.e., Tm = [t1, t2, . . . , tm]. We define S(m, n) =
argmin

S⊆Tm ,|S|=n

∑|S|
i=1(1− u(ti)) + α

∑|S|
i=1(2i − k − 1)w · ti and

F(m, n)denotes the correspondingoptimal value.Wecan see
that S(|T |, k) is the optimal solution of Eq. 3 and F(|T |, k)

is the corresponding optimal value. Then we have:

F(m, n) = min(F(m − 1, n), F(m − 1, n − 1) + φ(m, n))

(5)

where φ(m, n) = (1 − u(tm)) + α(2n − k − 1)wtm . We
devise a dynamic programming algorithm to find the optimal
solution.
Dynamic-programming for uncertainty only. It first initial-
izes F[0...|T |][0...k] to all zero, where F[m][n] = F(m, n)

and initializes S[0...|T |][0...k] to all ∅, where S[m][n] =
S(m, n). Then we can calculate F by Eq. 5 and update S cor-
respondingly. Finally, we can derive F[|T |][k] and S[|T |][k].
Question selection considering both uncertainty and diver-
sity. When considering both uncertainty and diversity, we
optimally choose tuples with high uncertainty by the above
dynamic programming algorithm, but when adding a tuple t
to the result set S, we check whether t has a high similarity
with existing selected tuples. If yes, we just drop it; else, we
include it to the result.

Algorithm 4 (IQS+) shows how to do question selection
with both uncertainty and diversity. Based on the dynamic
programming algorithm, we add a constraint to maintain the
selected tuples diversified (i.e.,the similarity between these
selected n tuples is less than a threshold δ) as far as possible.

The algorithm first sorts all tuples in T byw ·t (line 1), and
gets the sorted list T = [t1, t2, . . . , t|T |]. Then it initializes
all F[0...|T |][0...k] to zeros (line 2), and S[0...|T |][0...k]

to ∅ (line 3). First, the same as the above uncertainty-only
algorithm, if F[m − 1][n] ≤ F[m − 1][n − 1] + φ(m, n),
we will drop tm (lines 7–8) because discarding tm will get
a better solution. Otherwise, the algorithm checks whether
the tuple tm has a high similarity with existing tuples which
have been added into the current result (lines 10) using the
function hasHighSimilarity(t, S, δ). If so, tm is also dropped
to keep high diversity (lines 11–12). Otherwise, tm is added
to the diversified solution of S[m][n] (lines 14–15). More
specifically, hasHighSimilarity(t, S, δ) checks whether there
exists a tuple t ′ ∈ S such that s(t, t ′) > δ. If so, it returns
true, and false otherwise. Finally, S[|T |][k] is returned as the
selected question with k tuples (line 16).

Input: T , k, a weight vector w, a diversity threshold δ

Output: an approximate optimal set S
sort T by ascending order of w · t, T ← [t1, t2, ..., t|T |];1
initialize F[0...|T |][0...k] ← 0;2
initialize S[0...|T |][0...k] ← ∅;3
for m ← 1 to |T | do4

for n ← 1 to min(m − 1, k) do5
if F[m − 1][n] ≤ F[m − 1][n − 1] + φ(m, n) then6

F[m][n] ← F[m − 1][n];7
S[m][n] ← S[m − 1][n];8

else9
if has HighSimilari t y(tm , S[m − 1][n − 1], δ) then10

F[m][n] ← F[m − 1][n];11
S[m][n] ← S[m − 1][n];12

else13
F[m][n] ← F[m − 1][n − 1] + φ(m, n);14
S[m][n] ← S[m − 1][n − 1] ∪ {tm};15

return S[|T |][k];16

Algorithm 4: IDE Question Selection (IQS+)

Time complexityThe time complexity of the hasHighSimilar-
ity function is O(kL), where L is the length of tuples. Note
that the attributes number in T is small, thus the function
is effective. We first sort T (line 1), and the time complex-
ity for sorting is O(|T | log |T |). The time complexity for
the lines 4–15 is O(k2L|T |). Thus, the time complexity for
Algorithm 4 is O(max(|T | log |T |, k2L|T |)).
Memory complexity When we calculate F[m][n] and
S[m][n] (lines 6 - 15), only F[m − 1][n], F[m − 1][n −
1], S[m−1][n], S[m−1][n−1] are used. So whenwe calcu-
late a new row of F and S (i.e.,F[m][1...k] and S[m][1...k]),
we only need to store the last row of F and S (i.e.,F[m −
1][0...k] and S[m − 1][0...k]), and the new row of F and S
(i.e.,F[m][0...k] and S[m][0...k]). Besides, we should first
initialize F[m][0] to 0 and S[m][0] to ∅ before calculating
F[m][1...k] and S[m][1...k]. When we initialize F and S
(lines 2 - 3), we only need to store and initialize the first
row of F and S (i.e.,F[0][0...k] and S[0][0...k]). In sum-
mary, we only need to store at most two rows of F and S at
any time, but we use two arrays F and S which both have
(|T |+1)∗(k +1) elements (i.e.,|T |+1 rows) in Algorithm 4

123

Interactively discovering and ranking desired tuples by data exploration 763

for ease of explanation. To store two rows of F , the mem-
ory complexity is O(2(k + 1)), and to store two rows of S,
the memory complexity is 2 × O(0 + 1 + 2 + · · · + k) =
O(k(k + 1)), so the memory complexity of Algorithm 4 is
O(2(k +1)+k(k +1)) = O(k2), where k is a small number,
for example, k is 10 in our experiments.

Remark As heuristic algorithms, both IQS and IQS+ aim to
find the optimal solution of Eq. 2, which consists of three
parts (terms), measuring the decision uncertainty, ranking
uncertainty and diversity of tuples, respectively. The differ-
ence of IQS and IQS+ lies in that IQS (resp., IQS+) mainly
optimizes the first term (resp., the first two terms), and
designs the solution to address the following two terms (resp.,
the last term), so as to further optimize the entire equation.

To be specific, IQS can first find the optimal solution of the
first term (i.e., the optimal solutionof argminS⊆T ,|S|=k

∑
t∈S(1−

u(t))), and by checkingwhether a new tuple has high similar-
ities and low ranking uncertainties with existing tuples (i.e.,
by checking whether α ·|w ·ti −w ·t j |+β ·s(ti , t j) > δ), IQS
decideswhether to add the new tuple into the current solution;
IQS+ first finds the optimal solution of the first two terms of
Eq. 2 (i.e., the optimal solution of argminS⊆T ,|S|=k

∑
t∈S(1−

u(t))+α
∑

ti ,t j ∈S |w · ti −w · t j |), and by checking whether
a new tuple has high similarities with existing tuples (i.e., by
checking whether s(t, t ′) > δ), IQS+ decides whether to add
the new tuple. Hence, we can observe that IQS+ addresses
this problem mainly based on the optimal results on the first
two terms of Eq. 2 (i.e., the last term is approximated), while
IQS is only based on the first term (i.e., the last two terms are
all approximated). Therefore, IQS+ is more effective than
IQS, which is also empirically verified in experiments (Sec-
tion 7.1.1).

Example 9 Figure 3 shows an example of computing S when
considering only uncertainty (Fig. 3(c)) and both uncertainty
and diversity (Fig. 3(d)). Suppose we have 10 tuples, and
want to select 5 tuples for labeling. Figure 3(a) shows the
variables for calculating decision and ranking uncertainty
of t1, . . . , t10, and Fig. 3(b) shows the similarity of any
tuple pairs. For ease of description, let α = β = 1 and
δ = 0.9. Figure 3(a) shows the matrix S where each cell is
a solution without considering diversity during the dynamic
programming process and Fig. 3(b) shows thematrix S′ when
diversity is considered. Note that we only need to store the
last and current rows of S and S′, but we show the complete
matrices for ease of explanation in the example.

The cells colored in blue in the matrix S′ (Fig. 3(d)) are
different from those cells in S (Fig. 3(c)) becausewe consider
diversity. The cells S′[m][n]marked by green in Fig. 3(d) are
copied from S′[m−1][n] by dropping tm because tm has high
similarities with some tuples in S′[m − 1, n − 1] even when
F[m − 1][n − 1] + φ(m, n) ≤ F[m − 1][n]. Take the cell
S[6][2] and the green cell S′[6][2] as examples. First, when

(a)

(b)

(c) (d)

Fig. 3 Example of computing S

we only consider the uncertainty to compute the S[6][2], we
have F[6][2] = min(F[5][2], F[5][1]+φ(6, 2)), F[5][2] =
−2.67, and F[5][1] + φ(6, 2) = −3.84. We then observe
that F[5][1] + φ(6, 2) < F(5, 2), thus adding t6 to S[5][1]
is the optimal solution for selecting 2 tuples in {t1, t2, . . . , t6}
(S[6][2] = {t5, t6}). However, now we consider the diversity
to compute S′[6][2]. Before adding t6 to S′[5][1], i.e., {t5}, we
first check whether t6 has high similarity with {t5}. Because
s(t5, t6) = 0.97 > δ = 0.9 in Fig. 3(d), we cannot add t6 to
S′[5][1], and thus S′[6][2] = S′[5][2] = {t4, t5}.

5.3 Special cases

In this section, we discuss two special cases: IDE-Decision
(only true/false labels) and IDE-Ranking(onlypartial orders).

Definition 2 (IDE-DecisionQuestion selection) Given a par-
tially trained RF model, a table T , and a number k, the
problem is to select a set of k tuples S∗ from T so that the
following equation is minimized:

S∗ = argmin
S⊆T ,|S|=k

∑

t∈S

(1 − u(t)) + β
∑

ti ,t j ∈S

s′(ti , t j) (6)

where the notations inEq. 6 have the samemeaningwithEq. 2
except s′(ti , t j) = cos(v′(ti), v′(t j)). v′(t) is the prediction
vector of all trees in RF for tuple t , where the i-th element in

123

764 X. Qin et al.

v′(t) denotes the prediction label (1 or 0) of the i-th tree in
the random forest.

Solution for IDE-Decision: We still solve the IDE-Decision
problem using algorithm 4 but transform Eq. 2 to Eq. 6 by
setting w · t = 0 and replacing s(ti , t j) with s′(ti , t j).

Definition 3 (IDE-RankingQuestion selection) Given a par-
tially trained hybrid ranking model, a table T , and a number
k, the problem is to select a set of k tuples S∗ from T so that
the following equation is minimized:

S∗ = argmin
S⊆T ,|S|=k

α
∑

ti ,t j ∈S

|w · ti − w · t j | + β
∑

ti ,t j ∈S

s′′(ti , t j)

(7)

where the notations in Eq. 7 have the same meaning with
Eq. 2 except s′′(ti , t j) = cos(v′′(ti), v′′(t j)). v′′(t) is the
one-hot encoding transformed feature vector of tuple t output
by the LambdaMART sub-model (i.e., v′′(t) = t′′, where t′′
is defined in the training paragraph of Sect. 4.3).

Solution for IDE-Ranking: We also solve the IDE-Ranking
problem using Algorithm 4 but transform Eq. 2 to Eq. 7 by
setting u(t) = 1 and replacing s(ti , t j) with s′′(ti , t j).

Remark The similarity function in Eq. 2 is s(ti , t j) =
cos(v(ti), v(t j)), where v(t) is the concatenation of v′(t) and
v′′(t), v′(t) is output by the RF model of decision problem,
and v′′(t) is output by the LambdaMART sub-model of rank-
ing problem. There is no v′′(t) in the IDE-Decision Question
Selection problem, so s′(ti , t j) = cos(v′(ti), v′(t j)); and
there is no v′(t) in the IDE-RankingQuestion Selection prob-
lem, so s′′(ti , t j) = cos(v′′(ti), v′′(t j)).

6 Implementation details ofDExPlorer

In this section, we discuss the implementation details of our
system DExPlorer. We provide DExPlorer as a web ser-
vice, where different users can visit the website, interact with
the front-end, andDExPlorerwill return the ranked inferred
results to users. We use a Python web framework Django2

to build our website, and the server is built on a host of our
laboratory. More details are discussed in the following.
Data Structures In the front-end,we need to show the k tuples
for users to label. The k tuples are passed from the back-
end in the form of a JSON string, and shown to users in
an interactive table Tabulator3 in the front-end. In the back-
end, there are mainly two things to do: answer inference and
question selection. For answer inference, we need to store

2 https://www.djangoproject.com/.
3 http://tabulator.info/.

the feature vectors of the labeled tuples (pairs), and these
feature vectors are stored in the list of Python. For question
selection, we need to calculate the decision uncertainty and
ranking score of each tuple, where each feature vector of a
tuple is stored in a list, the decision uncertainties of all tuples
are stored in a list, and the ranking scores of all tuples are
also stored in a list. Besides, when running Algorithm 4, we
need to store the last and current rows of matrices F and S,
where the row of F is a list whose element is float, and the
row of S is a list whose element is set of integer (an integer
denotes the id of a tuple).
Read/Write Operations Read operations mainly occur when
loading data from the database to memory, and write oper-
ations mainly occur when users upload new datasets to
the server, and DExPlorer will store the datasets to the
database.
Multi-user interaction There may be multiple users making
requests to the server at the same time. We use the Django
framework to create a session to identify the user and a thread
to run the query for the user in the back-end.
Memory optimizationsWhen the dataset is small, we can load
all tuples of the table to the memory (the feature vectors of
tuples are stored in lists), and then calculate their decision
uncertainties and ranking scores. But when the datasets are
big and there is not enough memory, we need to do some
memory optimization. We allocate a fixed size of memory
for each user. When we do question selection, we load tuples
until the allocated memory is used up, calculate decision
uncertainties and ranking scores of these tuples, and reload
new tuples to the allocated memory. We repeat the above
process until all tuples are calculated.

7 Experiments

Datasets We use three datasets: Car, Publication and TPCH.
The Car dataset is from the Kaggle4 website with one rela-
tional table; the Publication dataset is crawled from theACM
Digital Library5 that contains six relational tables; and the
TPCH dataset6 contains eight relational tables. Table 2 gives
some statistics of these two datasets, where #-Tuples, #-
Col, #-Num, #-Cat, #-Text, and #-Date denote the number
of tuples, columns, numeric columns, categorical columns,
textual columns and date columns of each table, respec-
tively; and Table 3 gives more statistics of columns of
different datasets, where Column denotes the name of a
column of a dataset, Type denotes the data type of a col-
umn: i.e.,numeric, categorical, textual, or date, and Range

4 https://www.kaggle.com/orgesleka/used-cars-database.
5 https://www.acm.org/publications/digital-library.
6 https://relational.fit.cvut.cz/dataset/TPCH.

123

https://www.djangoproject.com/
http://tabulator.info/
https://www.kaggle.com/orgesleka/used-cars-database
https://www.acm.org/publications/digital-library
https://relational.fit.cvut.cz/dataset/TPCH

Interactively discovering and ranking desired tuples by data exploration 765

Table 2 Statistics of datasets
(#-Col: #-Column; #-Num:
#-Numeric; #-Cat:
#-Categorical; #-Text:
#-Textual; #-Date: #-Date)

Dataset Table #-Tuples #-Col #-Num #-Cat #-Text #-Date

Car Car 248419 14 4 10 0 0

Publication Author 6881 3 0 3 0 0

Institution 1453 4 1 3 0 0

Paper 1947 3 0 2 1 0

Conference 16 4 1 3 0 0

Paper_Author 8615 2 0 2 0 0

Paper_Keyword 2322 2 0 2 0 0

TPCH lineitem 4423659 16 4 8 1 3

orders 1500000 9 1 6 1 1

partsupp 800000 5 2 2 1 0

customer 150000 8 1 4 3 0

part 200000 9 2 6 1 0

supplier 10000 7 1 3 3 0

nation 25 4 0 3 1 0

region 5 3 0 2 1 0

denotes how many distinct values of a categorical or tex-
tual column has, or the range of a numeric or date column.
All columns in Car and Publication are listed in Table 2,
and for TPCH, only the columns involved in the tested
SQL queries are reported in Table 2 due to space limitation
(please refer to http://www.tpc.org/tpc_documents_current_
versions/current_specifications5.asp for more details).
The ground Truth SQL queries We use SQL queries as the
proxy for user’s query intent, because providing other types
of ground truth is subjective and thus not feasible. Gener-
ally speaking, an SQL query for an IDE problem can be
considered as a combination of an IDE-Decision and an
IDE-Ranking problem, which is specified by the SELECT,
WHERE, followed by the ORDER BY clause.

The decision cases of the tested SQL queries are shown
in Fig. 4(a): D1–D8 are for dataset Car, D9–D11 are for
dataset Publication, and D12–D15 are for dataset TPCH.
These cases are designed to be representative and cover
many different cases. More specifically, we designed 4 types
of queries: AND (only and conjunction is included in the
selective condition), OR (only or disjunction), NO (only
not exclusion) and MIXED (a mix of and, or, not). In addi-
tion, Fig. 4(a) also shows the size of the result of the query
Di in the column “|D|”, and its selectivity in the column
“%” (e.g., |D1|/|Car| = 5.77%). The queries which con-
tain square brackets are query templates, and by varying the
values in the brackets, we can get more queries with different
parameters. In experiments, we synthesize 10 queries with
different parameters for each query template, and report the
average experiment results of the 10 queries for each query
template.

The ranking cases of the tested SQL queries are shown in
Fig. 4(b): R1–R4 are for dataset Car, R5, R6 are for dataset

Publication, and R7–R10 are for dataset TPCH. They are cate-
gorized into 4 types: Hierarchical Sorting (sorted bymultiple
attributes hierarchically),Weighted Sum Sorting (sorted by a
weighted sum score), Hierarchical Weighted Sorting (sorted
by combining the above two types), and Nonlinear Sorting
(sorted by a nonlinear combination of multiple attributes).

The 15 tested SQL queries, Q1–Q15, for the IDE prob-
lem are shown in Fig. 4(c), which combine the cases in
Figs. 4(a) and 4(b). Here, the D and R denote the cases
in Figs. 4(a) and 4(b), respectively. For example, Q1 is
obtained by combining D1 for decision and R1 for ranking.
More natural language descriptions about the SQL queries
canbe found inhttps://github.com/Qinxuedi/dexplorer/blob/
master/SQL_desc.pdf.

Note that, in each iteration, the selected tuples are labeled
by a simulated user using the ground truth.
Environment All experiments are conducted on a MacBook
Pro with 16 GB 1600 MHz RAM and 2.5 GHz Intel Core i7
CPU, running OS X Version 10.14.5.
Parameters We include tuples (k = 10) in one question
for each interaction with the user. We will ask 20 itera-
tions for all datasets and show the performance during this
period. To bootstrap, we allow the user to input one key-
word, e.g.,the user can input “bmw” for Q1. Moreover, we
set γ = 1, α′ = 1 and β ′ = 2 in Eq. 1 to make decision and
ranking, and uncertainty and diversity equivalently impor-
tant. And for the function has HighSimilari t y(t, S, δ), we
set δ = 0.6. For random forest model, we use the Random-
ForestClassifier of sklearn,7 where we set the n_estimators
(i.e.,the number of trees) as 10, bootstrap = False (i.e.,all

7 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html.

123

http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://github.com/Qinxuedi/dexplorer/blob/master/SQL_desc.pdf
https://github.com/Qinxuedi/dexplorer/blob/master/SQL_desc.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

766 X. Qin et al.

Table 3 Statistics of columns of
different datasets

Dataset Table Column Type Range

Car Car seller cat 2

offerType cat 2

price num [1, 745000]

abtest cat 2

vehicleType cat 8

year num [1910, 2018]

gearbox cat 2

powerPS num [1, 20000]

model cat 250

kilometer num [5000, 150000]

fuelType cat 7

brand cat 39

notRepairedDamage cat 2

postalCode cat 8072

Publication Author id cat 6881

name cat 5623

institution_id cat 1451

Institution id cat 1453

name cat 1453

country cat 34

rank num [1, 2139]

Paper id cat 1947

conference_id cat 12

title text 1947

Conference id cat 16

name cat 4

year num [2013, 2018]

country cat 12

Paper_Author paper_id cat 1929

author_id cat 6871

Paper_Keyword paper_id cat 1775

keyword cat 1657

TPCH linelitem l_orderkey cat 6000000

l_dicsount num [0, 0.1]

l_extendedprice num [902, 104849.5]

l_suppkey cat 10000

l_quantity num [1, 50]

l_partkey cat 200000

l_commitdate date [1993-08-26, 1998-10-30]

l_shipmode cat 7

l_shipinstruct cat 4

orders o_orderdate date [1992-01-01, 1998-08-01]

o_orderkey cat 1500000

o_custkey cat 100000

o_orderpriority cat 5

o_totalprice num [910.17, 528557.31]

123

Interactively discovering and ranking desired tuples by data exploration 767

Table 3 continued Dataset Table Column Type Range

partsupp ps_partkey cat 200000

ps_suppkey cat 10000

ps_supplycost num [1, 1000]

customer c_custkey cat 150000

c_nationkey cat 25

part p_partkey cat 200000

p_type cat 150

p_size num [1, 50]

p_brand cat 25

p_name cat 199998

p_container cat 40

supplier s_suppkey cat 10000

s_nationkey cat 25

s_name cat 10000

s_acctbal num [-999.61, 9999.08]

nation n_nationkey cat 25

n_regionkey cat 5

region r_regionkey cat 5

r_name cat 5

labeled data is used to build each tree), and the other param-
eters are default settings; For LambdaMART model, we use
the RankLib library,8 where we set the number of trees as 10,
max depth of tree as 6, and learning rate as 0.1; For Ranking
SVM model, we use the SVM Rank library,9 where we set
the trade-off between training error and margin as 0.01, the
slack variable as L1-norm, and the kernel function as linear.

7.1 IDE Problem

7.1.1 Effectiveness

Metrics The Kendall tau distance [13] is a widely used met-
ric for quantifying two ranking lists [15,16,22], with the
basic idea of counting the number of pairwise disagreements
between two ranking lists. However, in our case, we do not
treat the result as a single ranked list. Instead,we consider two
parts: Q(T) as the ground truth desired and ranked tuples,
and Q′(T) = T \Q(T) as the undesired tuples. Given any
two tuples ti , t j ∈ T , the ground truth partial order between
them is either ti
 t j if (1) both ti and t j are in Q(T) but ti
is ranked higher than t j , or (2) ti ∈ Q(T) but t j ∈ Q′(T); or
ti ≡ t j when ti , t j ∈ Q′(T).

8 https://sourceforge.net/p/lemur/wiki/RankLib/.
9 http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html.

Let R be the desired and ranked tuples predicted by an
algorithm, and R′ = T \R. Given any tuple pair (ti , t j), based
on R and R′, it will predict a label, which is either ti
 t j or
ti ≡ t j , similar to the above process.

Let N = (|T |
2

)
be the total number of tuple pairs. Let

K D be the “disagreement” of all tuple pairs, i.e.,the total
number of tuple pairs whose predicted labels are different
from ground truth labels. We use the normalized Kendall tau
distance as the evaluation metric, denoted by accuracy =
N−K D

N .

Example 10 Suppose T = {t1, t2, t3, t4, t5, t6}. The ground
truth is Q(T) = {t1, t2, t3} that is ranked as t1
 t2
 t3,
and Q′(T) = {t4, t5, t6} (i.e.,t4 ≡ t5 ≡ t6 for their ranking).
The predicted result is R = {t1, t2, t4} that is ranked as t1

t4
 t2, and R′ = {t3, t5, t6}. The total number of tuple pairs
is N = (6

2

) = 15. There are K D = 6 mistakenly predicted
tuple pairs: {t4
 t2, t4
 t6, t3 ≡ t5, t3 ≡ t6, t4
 t5, t4

t6}. Therefore, accuracy = 15−6

15 = 0.6.

Besides using accuracy to capture the global ranking qual-
ity, the users might also be interested in the top-l results.
Thus, we also used precision@l = |R[1:l]∩Q(T)[1:l]|

l , where
R[1 : l] and Q(T)[1 : l] denote the set of top-l tuples in R
and Q(T), respectively.
Comparisons We tested (1) DExPlorer-IQS+ using the
model in Section 4.2 for answer inference and IQS+ for ques-
tion selection; (2) DExPlorer-IQS and (3) DExPlorer-

123

https://sourceforge.net/p/lemur/wiki/RankLib/
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

768 X. Qin et al.

(a)

(b)

(c)

Fig. 4 Tested IDE-Decision, IDE-Ranking, IDE Problems

123

Interactively discovering and ranking desired tuples by data exploration 769

AQS use the same answer inferencemodelwithDExPlorer-
IQS+ but different question selection algorithms: IQS and
AQS, respectively. We also compared with (4) SQLSynthe-
sizer [75] (denoted by SSY), which infers SQL by accepting
ranked positive tuples, and (5) learning-to-rank (i.e., LTR)-
based solutions as described in Section 4.2. We use 3 LTR
methods: Ranking SVM [56] (denoted by LTR1), Lamb-
daMART [71] (denoted by LTR2) and Gaussian model [10]
(denoted by LTR3). For answer inference, LTR1, LTR2, and
LTR3 use the ranking labels to train the Ranking SVMmodel,
LambdaMART model, Gaussian model, respectively, obtain
a score for each tuple t and rank based on the scores. Then
we learn a threshold θ to separate the desired and undesired
tuples, which results in the maximum information gain; for
question selection, we select tuples by the binary search strat-
egy in [56] for LTR1; we randomly select k tuples for LTR2;
and we select tuples with the highest entropy gains for LTR3
as described in [10].
Exp-1: Accuracy of IDE: Figure 5 shows the accuracy
of the IDE problems Q1 − Q15 for DExPlorer-IQS+,
DExPlorer-IQS, DExPlorer-AQS, SSY, LTR1, LTR2 and
LTR3. Figure 5 tells us that:

(1) With the increasing of #-Questions, the accuracy of
DExPlorer-IQS+,DExPlorer-IQS,DExPlorer-AQS and
SSY all increase, as expected. They finally achieve accuracy
of 0.978, 0.901, 0.965, 0.603, respectively, on average of Q1–
Q15 after asking 20 questions. DExPlorer-IQS+ behaves
similarly toDExPlorer-AQS, and even better in some cases
(i.e.,Q7, Q8, Q11). However, as shown in Section 7.1.2,
DExPlorer-AQS takes longer time (i.e.,more than 10 min-
utes for Q1 − Q8, Q12 − Q15), while DExPlorer-IQS+
can return results in interactive time because our ques-
tion selection algorithm, IQS+, is efficient. DExPlorer-
IQS+ improves the final accuracy by 8.5% compared with
DExPlorer-IQS, and converges faster, which proves that
IQS+ is a more effective question selection algorithm com-
pared with IQS, and both IQS+ and IQS are efficient (Sec-
tion 7.1.2).

(2) SSY supports decision using a decision tree and
supports ranking by one or more attributes hierarchically.
More specifically, it only supports the ranking type like
R1, R6, R7, R8 in Fig. 4(b), so SSY can only capture the
ORDER BY clause of Q1, Q6, Q11, Q12, Q13. Therefore,
for Q1 and Q6, SSY learns the target SQL query, ranks the
desired tuples correctly, and achieves an accuracy of 1.0. For
Q11, Q12, Q13, SSY can easily learns the ranking clauses,
but SSY can not learn the decision clauses quickly, result-
ing in the low accuracy. However, for Q3, Q5, Q9, Q10,
their corresponding IDE-Decision problems are inferred by
SSY correctly, but the IDE-Rankingproblems are not learned.
Thus, the accuracy of SSY is mainly decided by the size of
the query results. The number of query result of Q3, Q9, Q10

are small, thus many tuple pairs which are not in the query

result were correctly predicted, and the accuracy is high
for Q3, Q9, Q10. For Q5, there are many tuples in the
query result, but SSY does not capture the ranking infor-
mation of tuples in the query result, thus the tuple pairs
in the query result are all wrongly predicted, and thus the
accuracy is low. For Q2, Q4, Q7, Q8, their corresponding
IDE-Decision problems are so complex that the decision tree
fails to capture the SQL. Thus, their accuracy is not good.
Based on the above analysis, we can conclude that SSY can
only capture simple SQL queries for both decision and rank-
ing, and the accuracy highly depends on the size of the query
results, while DExPlorer has a stable performance for all
cases.

(3) LTR-based methods (i.e., LTR1, LTR2, LTR3) have low
accuracies even with the number of questions increasing:
the final average accuracies achieved by LTR1, LTR2, LTR3
are 0.147, 0.184, 0.099 respectively, which are much less
than that of DExPlorer (0.978). Even if they both build
models to learn the ranking, DExPlorer performs much
better than LTR because our system builds customized IDE-
Decision model to discover desired tuples while LTR simply
learns a threshold to do that. Therefore, we conclude that the
IDE problem cannot be solved perfectly by a single model,
i.e., the decision and ranking based models should work
together to achieve a good performance. Besides, LTR-based
methods do not have carefully designed question selection
algorithm for our IDE problem, which is of great importance
to our IDE problem. So LTR-based methods are not suitable
for our problem.

(4) The more complex the query is, the more questions
we need to answer to reach a certain accuracy. For example,
Q6 − Q8 and Q12 − Q15 are more complex than Q1 − Q5,
so the accuracy of Q6 − Q8, Q12 − Q15 increases slower
than Q1 − Q5 as shown in Fig. 5. More specifically, for Q3

(Fig. 5(c)) and Q8 (Fig. 5(h)), when we ask five questions
using DExPlorer, the accuracy of Q3 is 0.88 while the
accuracy of Q8 is only 0.61.

(5) The three versions of DExPlorer (IQS+, AQS, IQS)
all aim to optimize Eq. 2, and thus they have the similar
trend, i.e.,with the number of labeled tuples increasing, more
examples will be used to train the model, so the effectiveness
of IQS+,AQS, IQS improves. If the labeled data are sufficient,

Table 4 The reason of contributing to the final accuracy

Real Predict Reason

ti
 t j ti ∈ Q(T), t j ∈ Q(T), ti
 t j Ranking

ti ∈ Q(T), t j ∈ Q′(T) Decision

t j
 ti ti ∈ Q(T), t j ∈ Q(T), t j
 ti Ranking

ti ∈ Q′(T), t j ∈ Q(T) Decision

ti ≡ t j ti ∈ Q′(T), t j ∈ Q′(T) Decision

123

770 X. Qin et al.

(a)

(f)

(k) (l)

(g)

(b) (c)

(h)

(m) (n)

(i)

(d) (e)

(j)

(o)

Fig. 5 Effectiveness study for IDE problem (x-axis: #-Questions; y-axis: Accuracy)

(a) (b) (c) (d) (e)

Fig. 6 Decision rate and ranking rate for IDE Problem

Table 5 Treating IDE-Decision and IDE-Rankingholistically versus separately using our proposed models

Dataset Car Publication TPCH

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

DExPlorer #-Click 120 80 120 120 90 140 140 120 40 40 90 70 140 130 160

#-Drag 32 6 43 56 63 49 17 24 7 9 12 16 15 34 38

Accuracy 0.97 0.94 0.99 0.96 0.94 0.96 0.94 0.93 0.99 0.97 0.98 0.99 0.95 0.92 0.94

DExPlorer-SEP #-Click 120 80 120 120 90 140 140 120 40 40 90 70 140 130 160

#-Drag 35 14 45 62 70 56 23 28 12 12 12 18 17 35 40

Accuracy 0.88 0.84 0.80 0.74 0.71 0.79 0.69 0.71 0.88 0.83 0.92 0.87 0.73 0.75 0.67

the final effectiveness of IQS+, AQS, IQS should converge to
an almost same accuracy, such as Q1, Q2, Q3. However,
as discussed above, IQS+ can optimize more components
in Eq. 2 than IQS, so it will converge faster. For example,
for Q4, IQS+ achieves 0.96 accuracy when 10 question are
answered, and IQS achieves 0.85 accuracywhen 10 question
are answered. In addition, forAQS and IQS+, wemainly focus

on that IQS+ can conduct question selection in interactive
time (∼1 second) while AQS cannot (Section 7.1.2).

(6) To better compare the three versions of DEx-
Plorer from a big picture, we report the average number
of questions answered for convergence of Q1–Q15 and the
average accuracy at convergence of Q1–Q15. The average
numbers of questions answered for convergence achieved by

123

Interactively discovering and ranking desired tuples by data exploration 771

(a)

(f)

(k) (l)

(g)

(b) (c)

(h)

(m) (n)

(i)

(d) (e)

(j)

(o)

Fig. 7 Effectiveness study for IDE problem (x-axis: #-Questions; y-axis: Precision@50)

IQS+,AQS, IQS are 11, 11, 12, respectively. The average accu-
racies at convergence of IQS+, AQS, IQS are 0.954, 0.949,
0.882, respectively. As discussed in (5), IQS+ optimizesmore
components in Eq. 2 than IQS, so IQS+ converges faster than
IQS (11 questions vs. 12 questions) and has higher accuracy
at convergence than IQS (0.954 vs. 0.882). AQS also con-
verges fast and has high accuracy at convergence, but AQS
has a long question selection time. Each question selection
of AQS takes more than 10 minutes for dataset Car and TPCH
(Section 7.1.2).
Exp-2: Decision Rate and Ranking Rate Figure 5 shows
the overall accuracy which combines the score of IDE-
Decision and IDE-Rankingall together. But when checking
the accuracy results, we may not understand which part of
the accuracy score is due to the tuple selection performance
of the method, and which part is due to the tuple ranking
performance. So we report the decision rate (i.e., tuple selec-
tion rate) and ranking rate (i.e., tuple ranking rate) of current
accuracy results in this experiment.

To calculate the accuracy, we are actually counting the
number of correctly predicted tuple pairs. For a tuple pair
(ti , t j), there are three cases of their real relations: ti

t j , t j
 ti and ti ≡ t j . If the predicted relation of (ti , t j)

is the same as their real relation, this pair will contribute to
the final accuracy, i.e.,it will count 1 among all correctly
predicted pairs. Table 4 shows the reason that a tuple pair
will contribute to the final accuracy (i.e.,count 1 among all
correctly predicted pairs). For example, consider the first
row in Table 4, for a tuple pair (ti , t j), their real relation

(i.e.,ground truth) is ti
 t j , and the prediction result is
ti ∈ Q(T), t j ∈ Q(T), ti
 t j . This pair is predicted cor-
rectly because of the ranking model (i.e.,the tuple ranking
performance). And the pair of the second row is predicted
correctly because of the decision model (i.e.,the tuple selec-
tion performance).

We report the decision rate (i.e.,the rate of pairs which
are correctly predicted due to the decision model among
all correctly predicted pairs) and ranking rate (i.e.,the rate
of pairs which are correctly predicted due to the ranking
model among all correctly predicted pairs) in Fig. 6. We
report the evaluation results of five representative queries
(Q1, Q4, Q5, Q10, Q13). From Fig. 6, we can know that:
(1) With the increase of the number of questions answered,
the decision rate gradually decreases (the ranking rate gradu-
ally increases correspondingly), and finally becomes stable.
The decision performance is inaccurate at first, and the rank-
ing function is applied to the tuples that are predicted true,
so the decision rate is high at first. But with the increase of
#-Questions, the decision model is getting accurate, so the
ranking model can play a role.
(2) The final decision rate and ranking rate are highly cor-
related with the selectivity of the IDE-Decision problem
(i.e.,the column “%” in Fig. 4(a)). Basically speaking, the
higher the selectivity is, the higher the final ranking rate is.
For example, the selectivities of Q1, Q4, Q5, Q10 are 5.77%,
55.14%, 88.2%, 25.28%, respectively, and the final rank-
ing rates of Q1, Q4, Q5, Q10 are 0.37%, 30.92%, 77.21%,
6.20%, respectively. When the selectivity is high, there are

123

772 X. Qin et al.

Ta
bl
e
6

E
ffi
ci
en
cy

st
ud
y
fo
r
ID

E
Pr
ob
le
m

(A
I:
A
ns
w
er

In
fe
re
nc
e;
Q
S:

Q
ue
st
io
n
Se
le
ct
io
n;

se
c:
se
co
nd
;1

0
m
:1

0
m
in
ut
es
)

D
at
as
et

C
ar

Pu
b
lic
at
io
n

TP
C
H

Q
ue
ry

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

IQ
S+

A
I
(s
ec
)

0.
98

1.
01

0.
88

1.
14

1.
13

1.
00

1.
03

1.
31

0.
03

0.
08

0.
17

0.
83

0.
95

0.
87

1.
04

Q
S
(s
ec
)

0.
61

0.
73

0.
58

0.
62

0.
60

0.
60

0.
87

0.
93

0.
02

0.
05

0.
04

0.
52

0.
72

0.
83

0.
91

IQ
S

A
I
(s
ec
)

1.
02

0.
97

0.
98

1.
02

1.
12

1.
14

1.
19

1.
26

0.
04

0.
08

0.
19

0.
80

0.
88

0.
90

0.
97

Q
S
(s
ec
)

0.
59

0.
63

0.
60

0.
65

0.
55

0.
60

0.
86

0.
98

0.
02

0.
04

0.
04

0.
48

0.
67

0.
88

0.
89

A
Q
S

A
I
(s
ec
)

1.
03

1.
04

0.
88

1.
01

1.
05

1.
12

1.
18

1.
20

0.
05

0.
08

0.
17

0.
88

0.
90

0.
88

0.
95

Q
S
(s
ec
)

>
10
m

>
10
m

>
10
m

>
10
m

>
10
m

>
10
m

>
10
m

>
10
m

6
19

6
>
10
m

>
10
m

>
10
m

>
10
m more tuples that need to be ranked, so the final ranking rate

is high.
Exp-3: Precision@l of IDE: Figure 7 shows the preci-
sion@50 of the IDE problems Q1 − Q15 by DExPlorer-
IQS+,DExPlorer-IQS,DExPlorer-AQS, SSY, LTR1, LTR2
and LTR3 respectively. Since SSY only returns ORDER BY
clauses for Q1, Q6, Q11, Q12, Q13, we only report preci-
sion@50 of SSY for Q1, Q6, Q11, Q12, Q13. Figure 7 tells
us that: DExPlorer-IQS+ and DExPlorer-AQS perform
similarly, and they finally achieve 0.939 and 0.931 pre-
cision@50 on average after asking 20 questions, while
LTR-based solutions have poor performance for finding the
top-l tuples. SSY can only capture simple ranking clauses of
Q1, Q6, Q11, Q12, Q13, so it only has good performances in
Q1, Q6, Q11, Q12, Q13.
Exp-4: Treating IDE-Decision and IDE-Rankingseparately
(denoted by DExPlorer-SEP) versus holistically (denoted
by DExPlorer) in each round of user interaction. We show
the number of user operations in Table 5 (i.e.,the number
of “click” operation and “drag” operation) and accuracy of
DExPlorer when it gets converge (i.e.,the accuracy dif-
ference of two consecutive rounds is less than 1%). For
DExPlorer-SEP, we show users k (k = 10) tuples in
each round. In the first few rounds, users only perform
click operations, and in the later rounds, users only per-
form drag operations on the positive tuples inferred by
the first few rounds. The question selection algorithm of
DExPlorer-SEP is shown in Section 5.3. For ease of com-
parison, we perform the same number of “click” operations
as DExPlorer, then perform more (or same) number of
“drag” operations than DExPlorer, and report the accu-
racy of DExPlorer-SEP. We can see that the accuracy of
DExPlorer is much higher than DExPlorer-SEP: DEx-
Plorer averagely achieves 0.96 accuracy on 15 problems,
while DExPlorer-SEP averagely achieves 0.79 accuracy,
that is, DExPlorer outperforms DExPlorer-SEP by 22%.
This is becauseDExPlorer-SEP only asks questions related
to IDE-Decision problem in the first few rounds, without
considering the IDE-Rankingproblem, thus obtaining worse
results.

7.1.2 Efficiency

Exp-5: Efficiency We also test the efficiency of DEx-
Plorer on IDE problems Q1 − Q15. We repeat all experi-
ments ten times to compute the average results. Table 6 shows
the running time of answer inference and question selection
by algorithms IQS+, IQS and AQS.

We make the following observations: (1) IQS+ and IQS
significantly outperform the baseline—AQS on all IDE prob-
lems (i.e.,Q1 - Q15). This observation alsomatches the result
of the time complexity discussion in Section 5. (2) The results
on answer inference and question selection of the tested algo-

123

Interactively discovering and ranking desired tuples by data exploration 773

Table 7 User study (min:
minute; sec: second)

User #-Question Total time (min) Average time (sec) Accuracy

1 5 2.9 35 0.99

2 10 9.7 58 0.91

3 15 14.0 56 0.89

4 14 14.7 63 0.90

5 9 10.1 67 0.91

6 13 9.8 45 0.92

7 6 3.9 39 0.96

8 14 12.1 52 0.92

9 11 8.8 48 0.92

10 8 6.0 45 0.95

rithms do not vary a lot for different IDE problems on the
same dataset. The reason is that the algorithms are indepen-
dent of the complexity of the SQL queries. However, the
complex SQL queries usually take more rounds to converge.
(3) It takes less than 2 seconds on datasets Car and TPCH to
infer answers and select questions for the next round using
IQS+, which is feasible in practice, while it takes more than
10 minutes for AQS on the two datasets. For the small dataset
Publication, it only takes ∼0.1 second.

7.1.3 User study

Exp-6: User study The above experiments are conducted by
a simulated user, but in real scenarios, users may make mis-
takes while providing feedback, so we conduct user studies
to further evaluate the usability (effectiveness and efficiency)
of DExPlorer.

We employ 10 university students10 from a crowdsourcing
[5–7,36] platform Appen.11 The native languages of these
workers are English and their Human Intelligence Task (HIT)
approval ratings are bigger than 90%. We ask these users to
use our system DExPlorer to find their ranked desired cars
on the Car dataset. DExPlorer shows the user 10 tuples
(i.e.,a question) in each round, and the user labels these tuples
as true/false, and drags the positive tuples to sort them.When
the user is satisfied with the inferred ranked desired result
R or loses patience, the user can terminate the exploration
process. We report the number of rounds (i.e.,the number of
questions) and the total time that the user labels tuples when
the exploration process is terminated in Table 7. Besides,
we also report the accuracy of real user feedback when the
exploration process is terminated. To get the accuracy of real
user feedback, we need user’s feedback on R, because we do

10 We tell the workers that we need university students to participate
in a user study, and ask them to fill in their “.edu” mails. We then send
emails to these “.edu” mails with the link to the user study. Users can
use DExPlorer to find their ranked desired tuples in this link.
11 https://appen.com.

not know the user’s real intent (i.e.,we do not have the ground
truth). To get the ground truth, we sample 50 tuples for the
user to label (because it is impractical for the user to label
all tuples): 25 tuples are sampled from R and 25 tuples are
sampled from T \R (if we randomly sample 50 tuples from T ,
wemay not sample the user’s desired tuples).We ask the user
to label the 50 tuples as true/false and drag the positive tuples
to sort them. Thenwe can get the ground truth of the 50 tuples
and calculate the final accuracy (the calculation method of
accuracy is described in Section 7.1.1). The results are shown
in Table 7.

From Table 7, we can know that: (1) it takes 5−15 rounds
for the 10 users to find their ranked desired tuples by DEx-
Plorer, with an average of 10.5; (2) the time that the 10 users
find their ranked desired tuples by DExPlorer varies from
2.9 minutes to 14.7 minutes, with an average of 9.2 minutes;
the average time that the 10 users label tuples in each round
varies from 35 seconds to 67 seconds, with an average of 50.8
seconds. (3) the accuracy varies from 0.89 to 0.99, with an
average of 0.93. The experiment results in Table 7 show that:
DExPlorer can help users find their ranked desired tuples
effectively (the average accuracy is 0.93) in reasonable time
(< 15 minutes, the data exploration system AIDE [14] find
users’ desired tuples in 7.9 − 39.7 minutes, with an average
of 28.3 minutes).

7.2 Effectiveness of IDE-Decision problem

Metrics The IDE-Decision problem is actually a classifica-
tion problem: the tuples in the inferred answer R of the explo-
ration systemare classified as positive, and others as negative.
Thus, we use F1-score to evaluate the effectiveness of the
IDE-Decision problem, which is defined as: F1-score =
2×p×r

p+r , where p = T P
T P+F P , r = T P

T P+F N , T P = |R ∩
Q(T)|, F P = |R ∩ Q′(T)|, F N = |R′ ∩ Q(T)|.
Comparisons We compare (1) DExPlorer using the deci-
sion model in Section 4.2 for decision answer inference and
IQS+ in Section 5.3 for question selection, (2) AIDE [14]

123

https://appen.com

774 X. Qin et al.

(a)

(f)

(k) (l)

(g)

(b) (c)

(h)

(m) (n)

(i)

(d) (e)

(j)

(o)

Fig. 8 Effectiveness Study for IDE-Decision Problem (x-axis: #-Questions; y-axis: F1-score)

(a)

(f) (g)

(b) (c)

(h) (i)

(d) (e)

(j)

Fig. 9 Effectiveness study for IDE-Rankingproblem (x-axis: #-Questions; y-axis: Accuracy)

uses a decision tree for answer inference and selects k tuples
from diverse data areas to the user for question selection, and
(3) SQuID [17] is a state-of-the-art SQL query intent dis-
covery system, which takes a set of positive tuples as input
examples and outputs the inferred SQL whose query result
possibly includes these tuples. We select questions by ran-
domly choosing k positive tuples for SQuID.
Exp-7: Effectiveness on IDE-Decision:We testDExPlorer,
AIDE, SQuID on D1 − D15. Figure 8 shows the results and
tells us the followings:

(1) DExPlorer outperforms AIDE and SQuID, among
all IDE-Decision problems.DExPlorer averagely achieves
0.966 F1-score with 20 questions as training data, while

AIDE and SQuID only averagely achieve 0.737 and 0.558
F1-score, respectively. In summary, DExPlorer outper-
forms AIDE and SQuID by 31% and 73%, respectively.

(2) AIDE shows poor performance on complex queries
(i.e.,D7, D8, D14, D15), as mentioned in Section 4.2, which
is due to the use of decision tree. What’s more, AIDE only
captures the diversity between selected tuples but without
uncertainty, resulting in a poor performance.

(3) SQuID can only support the AND SQL queries. Thus,
it performs well in D1, D2, D9, D12. But for the OR, NO,
MIXED SQL queries, its performance (F1-score) does not
improve even with the increase of #-tuples for training.

123

Interactively discovering and ranking desired tuples by data exploration 775

7.3 Effectiveness of IDE-Rankingproblem

Metrics We also use accuracy defined in Section 7.1, with
the only difference that all tuple pairs need to be ranked.
ComparisonsWecompare (1)DExPlorer using the ranking
model in Section 4.2 for ranking answer inference and IQS+
in Sect. 5.3 for question selection, (2) LearnPreference [56]
uses ranking SVM for answer inference and we apply our
question selection algorithm (i.e.,Algorithm 4) because our
hybrid ranking algorithm is essentially ranking SVM, and
LambdaMART is only used for feature enrichment, and (3)
RankNet [1] is a learning-to-rank algorithm.WeuseRankNet
for answer inference and select questions by randomly select-
ing k tuples for RankNet.
Exp-8: Effectiveness on IDE-Ranking: Figure 9 shows the
results of different approaches on R1 − R10, where x-axis
denotes the number of questions answered by users, and y-
axis denotes accuracy. We make the following observations:

(1) DExPlorer outperforms LearnPreference and Rank
Net among all IDE-Rankingproblems, and they finally
achieve 0.951, 0.935 and 0.893 accuracy, respectively. In
summary, DExPlorer outperforms LearnPreference and
RankNet by 1.7% and 6.5%.

(2) DExPlorer and LearnPreference finally achieve
similar accuracy after several rounds of labeling, but DEx-
Plorer outperforms LearnPreference in the first few rounds.
Hence, the LambdaMART algorithm can help to solve the
cold start problem of Ranking SVM.

(3) RankNet behaves better than LearnPreference in the
first few rounds, but it is likely to overfit with the number
of labeled tuples increasing, such that the accuracy is lower
than LearnPreference in the following rounds.

8 Conclusion

We have built a data exploration system DExPlorer. We
have implemented a user-friendly front-end that allows the
user to select and rank tuples. On the back-end, we have
developed a well-performed answer inference model, based
on which we select a set of tuples to be answered by the user.
We have proved that the optimal question selection problem
is NP-hard and proposed an efficient and effective heuristic
algorithm. We have also conducted extensive experiments to
show the effectiveness of DExPlorer.

Acknowledgements This work is supported by NSF of China
(61925205, 61632016, 62102215), Huawei, TAL education, China
National Postdoctoral Program for Innovative Talents (BX2021155),
China Postdoctoral Science Foundation (2021M691784), Shuimu
Tsinghua Scholar and Zhejiang Lab’s International Talent Fund for
Young Professionals.

References

1. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamil-
ton, N., Hullender, G.N.: Learning to rank using gradient descent.
In: ICML, pp. 89–96 (2005)

2. Chai, C., Li, G., Li, J., Deng, D., Feng, J.: Cost–effective crowd-
sourced entity resolution: a partial-order approach. In: Özcan, F.,
Koutrika, G., Madden, S. (eds.) Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, 26 June–1 July 2016, pp. 969–984.
ACM (2016). https://doi.org/10.1145/2882903.2915252

3. Chai, C., Li, G., Li, J., Deng, D., Feng, J.: A partial–order–
based framework for cost–effective crowdsourced entity resolution.
VLDB J. 27(6), 745–770 (2018). https://doi.org/10.1007/s00778-
018-0509-6

4. Chai, C., Fan, J., Li, G., Wang, J., Zheng, Y.: Crowd–powered data
mining. CoRR (2018). arXiv:1806.04968

5. Chai, C., Fan, J., Li, G., Wang, J., Zheng, Y.: Crowdsourcing
database systems: overview and challenges. In: 35th IEEE Inter-
national Conference on Data Engineering, ICDE 2019, Macao,
China, 8–11 April 2019, pp. 2052–2055. IEEE (2019). https://doi.
org/10.1109/ICDE.2019.00237

6. Chai, C., Li, G., Fan, J., Luo, Y.: Crowdsourcing-based data
extraction from visualization charts. In: 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, 20–24
April 2020, pp. 1814–1817. IEEE (2020). https://doi.org/10.1109/
ICDE48307.2020.00177

7. Chai, C., Cao, L., Li, G., Li, J., Luo, Y., Madden, S.: Human-
in-the-loop outlier detection. In: Maier, D., Pottinger, R., Doan,
A.H., Tan, W.-C., Alawini, A., Ngo, H.Q. (eds.) Proceedings of the
2020 International Conference onManagement of Data, SIGMOD
Conference 2020, Portland, OR, USA, 14–19 June 2020, pp. 19–
33. ACM (2020). https://doi.org/10.1145/3318464.3389772

8. Chai, C., Li, G., Fan, J., Luo, Y.: CrowdChart: crowdsourced data
extraction fromvisualization charts. IEEETrans.Knowl.Data Eng.
33(11), 3537–3549 (2021). https://doi.org/10.1109/TKDE.2020.
2972543

9. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic
ranking of database query results. In: VLDB, pp. 888–899 (2004)

10. Chu, W., Ghahramani, Z.: Extensions of gaussian processes for
ranking: semisupervised and active learning. Learning to Rank, 29
(2005)

11. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn.
20(3), 273–297 (1995)

12. Dai, X., Yan, X., Zhou, K., Wang, Y., Yang, H., Cheng, J.: Convo-
lutional embedding for edit distance. In: Proceedings of the 43rd
International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 599–608 (2020)

13. Diaconis, P.: Group representations in probability and statistics.
IMS Lecture Notes-monograph 72(2), 7–108 (1988)

14. Dimitriadou, K., Papaemmanouil, O., Diao, Y.: Explore-by-
example: an automatic query steering framework for interactive
data exploration. In: SIGMOD, pp. 517–528 (2014)

15. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation
methods for the web. In: WWW (2001)

16. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM
J. Discrete Math. 17(1), 134–160 (2003)

17. Fariha, A., Meliou, A.: Example-driven query intent discovery:
abductive reasoning using semantic similarity. PVLDB 12(11),
1262–1275 (2019)

18. Friedman, J.H.: Greedy function approximation: a gradient boost-
ing machine. Ann. Stat. 29, 1189–1232 (2001)

19. Gharibshah, Z., Zhu, X., Hainline, A., Conway, M.: Deep learning
for user interest and response prediction in online display advertis-
ing. Data Sci. Eng. 5(1), 12–26 (2020)

123

https://doi.org/10.1145/2882903.2915252
https://doi.org/10.1007/s00778-018-0509-6
https://doi.org/10.1007/s00778-018-0509-6
http://arxiv.org/abs/1806.04968
https://doi.org/10.1109/ICDE.2019.00237
https://doi.org/10.1109/ICDE.2019.00237
https://doi.org/10.1109/ICDE48307.2020.00177
https://doi.org/10.1109/ICDE48307.2020.00177
https://doi.org/10.1145/3318464.3389772
https://doi.org/10.1109/TKDE.2020.2972543
https://doi.org/10.1109/TKDE.2020.2972543

776 X. Qin et al.

20. Gollapudi, S., Sharma, A.: An axiomatic approach for result diver-
sification. In: WWW, pp. 381–390 (2009)

21. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms
for maximum dispersion. Oper. Res. Lett. 21(3), 133–137 (1997)

22. Haveliwala, T.H.: Topic-sensitive pagerank. In: WWW, pp. 517–
526. ACM (2002)

23. Hazelwood, K., Bird, S., Brooks, D., Chintala, S., Diril, U., Dzhul-
gakov, D., Fawzy,M., Jia, B., Jia, Y., Kalro, A., Law, J., Lee, K., Lu,
J., Noordhuis, P., Smelyanskiy, M., Xiong, L., Wang, X.: Applied
machine learning at facebook: a datacenter infrastructure perspec-
tive. In: HPCA (2018)

24. He, C., Wang, C., Zhong, Y.-X., Li, R.-F.: A survey on learning to
rank. In: 2008 International Conference on Machine Learning and
Cybernetics, vol. 3, pp. 1734–1739. IEEEE (2008)

25. He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah,
A., Herbrich, R., Bowers, S., Candela, J. Q.: Practical lessons from
predicting clicks on ads at facebook. In: ADKDD, pp. 5:1–5:9
(2014)

26. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient ir-style
keyword search over relational databases. In: VLDB, pp. 850–861
(2003)

27. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in
relational databases. In: VLDB, pp. 670–681 (2002)

28. Huang, E., Peng, L., Palma, L.D., Abdelkafi, A., Liu, A., Diao, Y.:
Optimization for active learning-based interactive database explo-
ration. PVLDB 12(1), 71–84 (2018)

29. Jamieson, K.G., Nowak, R.D.: Active ranking using pairwise com-
parisons. arXiv preprint arXiv:1109.3701 (2011)

30. Joachims, T.: Training linear svms in linear time. In: SIGKDD, pp.
217–226 (2006)

31. Kalashnikov, D.V., Lakshmanan, L.V., Srivastava, D.: Fastqre: Fast
query reverse engineering. In: Proceedings of the 2018 Interna-
tional Conference on Management of Data, pp. 337–350 (2018)

32. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for
supervised learning. In: Machine Learning Proceedings 1994, pp.
148–156. Elsevier (1994)

33. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text
classifiers. In: SIGIR’94, pp. 3–12. Springer (1994)

34. Li, H., Chan, C.-Y., Maier, D.: Query from examples: an iterative,
data-driven approach to query construction. Proc. VLDB Endow.
8(13), 2158–2169 (2015)

35. Li, G., Chai, C., Fan, J., Weng, X., Li, J., Zheng, Y., Li, Y., Yu,
X., Zhang, X., Yuan, H.: CDB: optimizing queries with crowd–
based selections and joins. In: Salihoglu, S., Zhou, W., Chirkova,
R., Yang, J., Suciu, D. (eds.) Proceedings of the 2017ACM Interna-
tional Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, 14–19 May 2017, pp. 146–1478. ACM
(2017). https://doi.org/10.1145/3035918.3064036

36. Li, G., Chai, C., Fan, J., Weng, X., Li, J., Zheng, Y., Li, Y., Yu,
X., Zhang, X., Yuan, H.: CDB: a crowd–powered database system.
Proc. VLDB Endow. 11(12), 1926–1929 (2018). https://doi.org/
10.14778/3229863.3236226

37. Li, M.,Wang, H., Li, J.: Mining conditional functional dependency
rules on big data. Big Data Min. Anal. 03(01), 68 (2020)

38. Liaw, A., Wiener, M., et al.: Classification and regression by ran-
domforest. R News 2(3), 18–22 (2002)

39. Liu, F.,Yu,C.,Meng,W.,Chowdhury,A.: Effective keyword search
in relational databases. In: SIGMOD, pp. 563–574 (2006)

40. Luo, Y., Chai, C., Qin, X., Tang, N., Li, G.: Interactive cleaning for
progressive visualization through composite questions. In: ICDE,
pp. 733–744 (2020)

41. Luo, Y., Qin, X., Tang, N., Li, G.: Deepeye: towards automatic data
visualization. In: ICDE, pp. 101–112 (2018)

42. Luo, Y., Qin, X., Tang, N., Li, G., Wang, X.: DeepEye: Cre-
ating Good Data Visualizations by Keyword Search. In: Das,
G., Jermaine, C.M., Bernstein, P.A. (eds.) Proceedings of the

2018 International Conference onManagement of Data, SIGMOD
Conference 2018, Houston, TX, USA, 10–15 June 2018, pp. 1733–
1736. ACM (2018). https://doi.org/10.1145/3183713.3193545

43. Luo, Y., Chai, C., Qin, X., Tang, N., Li, G.: VisClean: interactive
cleaning for progressive visualization. Proc.VLDBEndow. 13(12),
2821–2824 (2020). https://doi.org/10.14778/3415478.3415484

44. Luo, Y., Tang, N., Li, G., Li, W., Zhao, T., Yu, X.: DeepEye: a
data science system for monitoring and exploring COVID–19 data.
IEEE Data Eng. Bull. 43(2), 121–132 (2020)

45. Luo, Y., Li, W., Zhao, T., Yu, X., Zhang, L., Li, G., Tang, N.:
DeepTrack:monitoring and exploring spatio-temporal data – a case
of tracking COVID–19. Proc. VLDB Endow. 13(12), 2841–2844
(2020). https://doi.org/10.14778/3415478.3415489

46. Luo, Y., Qin, X., Chai, C., Tang, N., Li, G., Li, W.: Steerable self–
driving data visualization. IEEE Trans. Knowl. Data Eng. (2020).
https://doi.org/10.1109/TKDE.2020.2981464

47. Luo, Y., Tang, N., Li, G., Tang, J., Chai, C., Qin, X.: Natural Lan-
guage to visualization by neural machine translation. IEEE Trans.
Vis. Comput. Graph. (2021). https://doi.org/10.1109/TVCG.2021.
3114848

48. Luo, Y., Tang, N., Li, G., Chai, C., Li, W., Qin, X.: Synthesiz-
ing natural language to visualization (NL2VIS) benchmarks from
NL2SQL benchmarks. In: SIGMOD, pp. 1235–1247 (2021)

49. Martins,D.M.L.:Reverse engineering database queries fromexam-
ples: state-of-the-art, challenges, and research opportunities. Inf.
Syst. 83, 89–100 (2019)

50. Masermann, U, Vossen, G.: Design and implementation of a novel
approach to keyword searching in relational databases. In: Current
Issues in databases and information systems, pp. 171–184 (2000)

51. Mishra, C., Koudas, N.: Interactive query refinement. In: Proceed-
ings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, pp. 862–873
(2009)

52. Nanongkai, D., Lall, A., Sarma, A.D., Makino, K.: Interactive
regret minimization, pp. 109–120 (2012)

53. Panev, K., Michel, S.: Reverse engineering top-k database queries
with paleo. In: EDBT, pp. 113–124 (2016)

54. Panev, K., Michel, S., Milchevski, E., Pal, K.: Exploring databases
via reverse engineering ranking queries with paleo. Proc. VLDB
Endow. 9(13), 1525–1528 (2016)

55. Psallidas, F., Ding, B., Chakrabarti, K., Chaudhuri, S.: S4: Top-k
spreadsheet-style search for query discovery. In: Proceedings of the
2015 ACMSIGMOD International Conference onManagement of
Data, pp. 2001–2016 (2015)

56. Qian, L., Gao, J., Jagadish, H.: Learning user preferences by adap-
tive pairwise comparison. PVLDB 8(11), 1322–1333 (2015)

57. Qin, X., Chai, C., Luo, Y., Zhao, T., Tang, N., Li, G., Feng, J., Yu,
X., Ouzzani, M.: Ranking desired tuples by database exploration.
In: ICDE

58. Qin, X., Luo, Y., Tang, N., Li, G.: Deepeye: an automatic big data
visualization framework. Big Data Min. Anal. 1(1), 75–82 (2018)

59. Qin, X., Luo, Y., Tang, N., Li, G.: DeepEye: Visualizing Your
Data by Keyword Search. In: Böhlen, M.H., Pichler, R., May, N.,
Rahm, E., Wu, S.-H., Hose, K. (eds.) Proceedings of the 21st Inter-
national Conference on Extending Database Technology, EDBT
2018, Vienna, Austria, 26–29 March 2018, pp 441–444. OpenPro-
ceedings.org (2018). https://doi.org/10.5441/002/edbt.2018.42

60. Qin, X., Luo, Y., Tang, N., Li, G.: Making data visualization more
efficient and effective: a survey. VLDB J. 29(1), 93–117 (2020)

61. Settles, B.: Active learning literature survey (2009)
62. Shannon, C.E.: A mathematical theory of communication. Bell

Syst. Tech. J. 27(3), 379–423 (1948)
63. Shen, Y., Chakrabarti, K., Chaudhuri, S., Ding, B., Novik, L.:

Discovering queries based on example tuples. In: SIGMOD, pp.
493–504 (2014)

123

http://arxiv.org/abs/1109.3701
https://doi.org/10.1145/3035918.3064036
https://doi.org/10.14778/3229863.3236226
https://doi.org/10.14778/3229863.3236226
https://doi.org/10.1145/3183713.3193545
https://doi.org/10.14778/3415478.3415484
https://doi.org/10.14778/3415478.3415489
https://doi.org/10.1109/TKDE.2020.2981464
https://doi.org/10.1109/TVCG.2021.3114848
https://doi.org/10.1109/TVCG.2021.3114848
https://doi.org/10.5441/002/edbt.2018.42

Interactively discovering and ranking desired tuples by data exploration 777

64. Shen, L., Shen, Luo, Y., Yang, X., Hu, X., Zhang, X., Tai, Z.,Wang,
J.: Towards natural language interfaces for data visualization: a
survey (2021). arXiv:2109.03506

65. Singh, R.,Meduri, V.V., Elmagarmid,A.K.,Madden, S., Papotti, P.,
Quiané-Ruiz, J., Solar-Lezama, A., Tang, N.: Synthesizing entity
matching rules by examples. PVLDB 11(2), 189–202 (2017)

66. Tian, S., Mo, S., Wang, L., Peng, Z.: Deep reinforcement learning-
based approach to tackle topic-aware influencemaximization. Data
Sci. Eng. 5(1), 1–11 (2020)

67. Tran, Q.T., Chan, C.-Y., Parthasarathy, S.: Query by output. In:
Proceedings of the 2009 ACM SIGMOD International Conference
on Management of data, pp. 535–548 (2009)

68. Tran, Q.T., Chan, C.-Y., Parthasarathy, S.: Query reverse engineer-
ing. VLDB J. 23(5), 721–746 (2014)

69. Wang,Y.,Yao,Y., Tong,H.,Xu, F., Lu, J.:A brief reviewof network
embedding. Big Data Min. Anal. 2(1), 35 (2019)

70. Weiss, Y.Y., Cohen, S.: Reverse engineering spj-queries from
examples. In: Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, pp. 151–
166 (2017)

71. Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Adapting boosting for
information retrieval measures. Inf. Retriev. 13(3), 254–270 (2010)

72. Xie, M., Chen, T., Wong, R.C.-W.: Findyourfavorite: an interactive
system for finding the user’s favorite tuple in the database. In:
SIGMOD, pp. 2017–2020 (2019)

73. Xie, M., Wong, R.C.-W., Lall, A.: Strongly truthful interactive
regret minimization. In: SIGMOD, pp. 281–298 (2019)

74. Zhang, M., Elmeleegy, H., Procopiuc, C.M., Srivastava, D.:
Reverse engineering complex join queries. In: Proceedings of the
2013 ACMSIGMOD International Conference onManagement of
Data, pp. 809–820 (2013)

75. Zhang, S., Sun, Y.: Automatically synthesizing sql queries from
input-output examples. In: ASE, pp. 224–234 (2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2109.03506

	Interactively discovering and ranking desired tuples by data exploration
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement
	4 Overview of DExPlorer
	4.1 System overview (Fig. 1)
	4.2 Answer inference
	4.3 Iteratively training and predicting

	5 Question selection
	5.1 Uncertainty and diversity
	5.2 Question selection algorithms
	5.2.1 AQS: an approximate algorithm
	5.2.2 IQS: an efficient algorithm
	5.2.3 IQS+: an efficient and effective algorithm

	5.3 Special cases

	6 Implementation details of DExPlorer
	7 Experiments
	7.1 IDE Problem
	7.1.1 Effectiveness
	7.1.2 Efficiency
	7.1.3 User study

	7.2 Effectiveness of IDE-Decision problem
	7.3 Effectiveness of IDE-Rankingproblem

	8 Conclusion
	Acknowledgements
	References

