l‘)

Check for
updates

MathGraph: A Knowledge Graph
for Automatically Solving Mathematical
Exercises

Tianyu Zhao!®™), Yan Huang?, Songfan Yang?, Yuyu Luo!, Jianhua Feng?,
Yong Wang!, Haitao Yuan', Kang Pan', Kaiyu Li', Haoda Li', and Fu Zhu'

! Tsinghua University, Beijing, China
{zhaoty17,wangy18,yht16,pk16,ky-1118,1hd16,zhuf18}@mails.tsinghua.edu.cn
{luoyuyu, fengjh}@tsinghua.edu.cn
2 TAL Education Group, Beijing, China
{galehuang,yangsongfan}@100tal.com

Abstract. Knowledge graphs are widely applied in many applications.
Automatically solving mathematical exercises is also an interesting task
which can be enhanced by knowledge reasoning. In this paper, we design
MathGraph, a knowledge graph aiming to solve high school mathe-
matical exercises. Since it requires fine-grained mathematical derivation
and calculation of different mathematical objects, the design of Math-
Graph has major differences from existing knowledge graphs. MathGraph
supports massive kinds of mathematical objects, operations, and con-
straints which may be involved in exercises. Furthermore, we propose
an algorithm to align a semantically parsed exercise to MathGraph and
figure out the answer automatically. Extensive experiments on real-world
datasets verify the effectiveness of MathGraph.

Keywords: Knowledge graph - Mathematical exercise -
Knowledge reasoning

1 Introduction

Currently, large scale knowledge graphs are widely used in many real-world appli-
cations, such as semantic web search, and question-answer systems, natural lan-
guage processing, and data analytic. For example, if we ask “What is the highest
mountain?”’ on a web search engine, it may directly show the answer “Everest”
with the help of a knowledge graph.

Recently intelligent education is more and more popular and automatically
resolving mathematical exercises can help students improve the comprehensive
ability. However, it is rather challenging to automatically resolve mathematical
exercises without knowledge graphs, because it requires to use complex semantics
and extra calculations. In this paper, we propose MathGraph, a knowledge
graph aiming to solve high school mathematical exercises. MathGraph must be
specially designed and differentiated from other knowledge graphs. The reasons
are listed as follows:

© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11446, pp. 760-776, 2019.
https://doi.org/10.1007/978-3-030-18576-3_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18576-3_45&domain=pdf
https://doi.org/10.1007/978-3-030-18576-3_45

A Knowledge Graph for Automatically Solving Mathematical Exercises 761

1. Knowledge in MathGraph belongs to a very specific domain. Building
MathGraph requires specific mathematical knowledge. Traditional knowledge
graphs are built based on extensive semantic data, e.g., Wikipedia. However,
it is very hard to get the semantic data for mathematical problems.

2. Knowledge in MathGraph is stored in class-level rather than
instance-level. Most of the traditional knowledge graphs focus on extracting
instances, categories, and relations among instances. For example, a 3-tuple
(Beijing, isCaptialOf, China) shows a relation between two instances. How-
ever, in MathGraph, there is no instance in the origin graph, but only many
class-level mathematical objects (such as Complex Number, Ellipse, etc.).
Only if an exercise is given, instances will be created accordingly.

3. MathGraph supports mathematical derivation and calculation. The
reasoning process of mathematical problems is different from other problems,
because besides logical relation, mathematical derivation must be included in
the knowledge graph to solve mathematical exercises.

Thus, in this paper, we focus on building a knowledge graph MathGraph for
resolving mathematical problems. We propose an effective algorithms to align a
mathematical problem to MathGraph, and use the aligned sub-graph to resolve
a mathematical exercise. The contributions of this paper are as follows.

— We specially design the structure of MathGraph to support mathematical
derivation and calculation. We model different mathematical objects, oper-
ations and constraints in MathGraph. To the best of our knowledge, this
is the first attempt to build a knowledge graph for resolving mathematical
problems.

— We propose an algorithm to align a mathematical problem to MathGraph.

— We design a method to resolve mathematical exercises by the help of a seman-
tic parser.

— Experimental study shows great performance of MathGraph and our proposed
method.

Figure 1 gives an overview of the exercise-solving process with MathGraph.
We detail the structure of MathGraph and the exercise-solving algorithm later.

2 Related Work

2.1 Reasoning with Knowledge Graph

Since knowledge graphs can provide well-structured information and relations
of the entities, it is known to be useful to do reasoning in many tasks, such
as query answering and relation inference (i.e., to infer missing relations in the
knowledge graph [4,11,12]). Guu et al. [7] proposed a technique to answer queries
on knowledge graph by “compositionalizing” a broad class of vector space mod-
els, which preforms well on query answering and knowledge graph completion.
Toutanova et al. [17] proposed a dynamic programming algorithm to incorpo-
rate all paths in knowledge graph within a bounded length, and modelled entities

762 T. Zhao et al.

In the complex plane, — Inactive Edge

—— Active Edge

Get Real Part Real Number
Get Imaginary Part O
Get Modulus

Coordinate Position

Parser
Get Conjugate —_— uadrant Il
l i O @

Operations Answer
Structured Constraintsl MathGraph
Input Instances O\
i+1
A : :O\ a1 +az+b+b=0
C><:C)/v Va2 +02 = /a2 + 02
Gr O/

Constraint Set

xzand y are
a conjugate
pair

Origin

. i+1
Text complex conjugate of 7—

is located in

l Complex Number

Fig. 1. Overview of using MathGraph to solve a mathematical exercise

and relations in the compositional path representations. Zhang et al. [18] pro-
posed a deep learning architecture and a variational learning algorithm, which
can handle noise in the question and do multi-hop reasoning in knowledge graph
simultaneously. Zheng et al. [19] used a large number of binary templates rather
than semantic parsers to query knowledge graph with natural language. A low-
cost technique that can generate a large number of templates automatically is
also proposed. Our work is different from above works. Firstly, there are some
differences between the structure of MathGraph and existing knowledge graphs
(e.g. Freebase and NELL [2]). Secondly, to solve a math exercise usually requires
multi-step mathematical derivation, and the derivation procedures need to be
output as the problem-solving process. Thirdly, derivation and calculation should
be performed simultaneously when solving an exercise to retrieve the answer.

2.2 Automated Solving Mathematical Problems

Automated solving mathematical problems has been studied over years. But they
only focused on easy problems, e.g., mathematical problems in primary schools.

Kojiri et al. [10] constructed a mechanism called solution network to auto-
matically generate the answers for mathematical exercises. The solution network
is represented as a tree to describe inclusive relations of exercises.

Tomas et al. [16] proposed a framework of Constraint Logic Programming to
automatically generate and solve mathematical exercises. This paper proposed
to concentrate on the solving procedures rather than many simple exercise tem-
plates so that the generation and explanation of these exercises is easy.

Ganesalingam et al. [6] proposed a method that solves elementary mathe-
matical problems using logical derivation and shows solutions which are made
difficult to distinguish from human’s writing.

However, these works all have their own limits. For example, some can solve
problems only involving elementary math (e.g. set theory, basic algebraic oper-

A Knowledge Graph for Automatically Solving Mathematical Exercises 763

ation) and have no deeper theorems; some only support very limited logical
derivation. Thus, in this paper, we decide to use a knowledge graph to represent
as many mathematical entities and logical relationships as possible.

3 Preliminaries

In this section, we describe the entities that may appear in MathGraph, including
mathematical objects and instances, operations, and constraints.

Mathematical Object and Instance. A mathematical object is an abstract
object which has a definition, some properties, and can be taken as the target of
some operations or derivation. Note that a mathematical object can be defined
in terms of other objects. A concrete object that satisfies the definition of the
mathematical object is called an instance.

For example, Complex Number can be considered as a mathematical object:

— Definition: A complex number is a number that can be in the form a + bi,
where a and b are both real numbers and 7 is the imaginary unit which satisfies
i? = —1.

— Property example: Imaginary part is a property of a complex number. The
imaginary part of a complex number a + bi is b.

— Operation example: (a1 + b13) - (ag + bai) = (a1az — b1b2) + (a1by + asby)i

— Derivation example: If (a; +b1i) and (ag + bat) are conjugated to each other,
then a1 = a2 and by + by = 0.

And 2+ 3¢ and (¢ + 1)(¢ — 3) are instances of Complex Number.

Different mathematical objects should be described as different structures in
MathGraph. Thus, in MathGraph, a mathematical object is represented with a
tuple of key properties (p1,ps, - ,pn). The key properties of a mathematical
object are those properties that together can form and describe all the informa-
tion of an instance of the object. Table 1 shows examples of key properties of
some mathematical objects. Two instances of a mathematical object is equivalent
if and only if all the key properties are equivalent.

In a mathematical exercise, instances can be categorized into certain
instances and uncertain instances depending on whether it contains some uncer-
tain values as its key properties. An instance is a certain instance if all key
properties are certain; uncertain instance otherwise. For example, a real number
2.3 and a function f(z) = x4+ sin(z) are certain; a complex number 3+ai (where
a € R) and a random triangle AABC are uncertain.

Operation. Generally, an operation is an action or procedure which, given one
or more mathematical objects as input (known as operands), produces a new
object. Simple examples include addition, subtraction, multiplication, division,
and exponentiation. In addition, other procedures such as calculating the real
part of a complex number, the derivative of a function, and the area of a triangle
can also be considered as operations.

764 T. Zhao et al.

Table 1. Examples of key properties of different mathematical objects

Mathematical object | Example instance Key properties
Complex number ai+b (a,b)
Elementary function | f(z) = (an algebraic expression about z) | (the algebraic expression)
Triangle NABC (a,b,c, LA, £B, £C)
Line Az +By+C=0 (A, B, C)

e 2
Ellipse S+ % -1 (a,b)

Constraint. A constraint is a description or condition about one or more
instances, at least one of which is an uncertain instance. There are four types
of constraints: descriptive constraints (e.g. complex numbers x and y are conju-
gated), equality constraints (e.g. a + 2 = b), inequality constraints (e.g. a* < 5),
and set constraints (e.g. a € N).

Most descriptive constraints cannot be applied directly to solve the exercise,
but can be converted into other three types of constraints using some definitions
or theorems. For example, if an exercise says “a + 3i and 7 — bi are a conjugate
pair”, by the definition of conjugate complex, we can know that a = 7 and
3 + (=b) = 0 by derivation.

4 The Structure of MathGraph

MathGraph is a directed graph G = (V| E), in which each node v € V' denotes
a mathematical object, an operation or a constraint, and each edge e € F is the
relation of two nodes.

4.1 Nodes

In general, nodes are categorized into three different types: object nodes, oper-
ation nodes and constraint nodes.

Object Nodes. An object node v, = (t,P,C) represents a mathematical
object, where ¢ denotes an instance template of this mathematical object;
P = (P,P, - ,P,) is a tuple indicating key properties of the mathemati-
cal object; and C'is a set of constraints that, according to the definition or some
theorems, must be satisfied by this mathematical object. Table 2 shows an exam-
ple of “triangle” as an object node. We can see that properties and theorems of
triangles are included in the constraint set.

Operation Nodes. An operation node v, = (X1, Xa,- -+, X, Y, f) represents
a k-ary operation, where X;(i = 1,2,--- , k) and Y are object nodes representing
the domain of the i*" operand x; and the result of the operation y respectively,
and f is a function that implements the operation and can be finished by a series

A Knowledge Graph for Automatically Solving Mathematical Exercises 765

Table 2. An example of object node: triangle

Mathematical object | Triangle
Instance template NABC

Key properties (a,b,¢,A,B,C)
{a,b,c >0,
0<AB,C<m,
A+B+C=m,
a+b>c,a+c>bb+c>a,
Constraint set a b c

sinA _ sinB _ sinC’
a? =b% + ¢ — 2besin A,
b? = a? + ¢ — 2acsin B,
& = a® + b* — 2absin C}

of symbolic execution [1,3,9] process using a symbolic execution library (e.g.
SymPy [13], Mathematica [8]) even if some operands are uncertain instances.

For example, getting the modulus of a complex number is an unary operation
where X; = (Complex Number), Y = (Real Number), and f can be implemented
by the following symbolic execution process: (1) Get the real part of x1; (2) Get
the imaginary part of x1; (3) Return the squared root of the sum of (1) squared
and (2) squared.

Constraint Nodes. A constraint node v, = (d, Xy, Xo, -, Xi, f) represents a
descriptive constraints of k instances, where d is the description of the constraint,
X;(i=1,2,--- ,k) are object nodes representing the domain of each involving
instance, and f is a function which maps this descriptive constraint into several
equality constraints, inequality constraints and set constraints.

For example, a constraint node represents that x; and x5 are a conjugate
pair, where X; = X5 = (Complex Number), and f can be implemented by the
following process: (1) Get the real part of z1 as ay; (2) Get the real part of z
as ag; (3) Get the imaginary part of 21 as by; (4) Get the imaginary part of x5
as bo; (5) Return two equality constraints: a; = ag and by + by = 0.

4.2 Edges

There are two types of edges in MathGraph: the DERIVE edges and the FLOW
edges.

The DERIVE Edge. For two object nodes X and Y, there may be a DERIVE
edge epprivie = (X, Y] f) to indicate a general-special relationship between them,
such as Triangle and Isosceles Triangle. If X ===, Y, an instance of X can be
reassigned as an instance of Y if certain conditions are met. These conditions

are encapsulated into a function f : X — {False, True}: if these conditions are

766 T. Zhao et al.

met, the function f will return True and reassign the instance from X to Y
otherwise it will simply return False.

For example, there is a DERIVE edge from object node Triangle to Isosceles
Triangle, where the function f can be implemented as: (1) if the values of key
properties or a constraint shows that two angles or lengths of two edges of the
origin instance are equal, return an instance of Isosceles Triangle with the same
key properties; (2) return False otherwise.

When solving an exercise, reassigning an instance to a more specific object
node will bring more constraints of this object and help find the answer. For
example, for a thombus ABCD, if we know that ZA = 90°, we can infer, by the
DERIVE edge from object node Rhombus to Square, that ABCD is a square and
has constraints that ZA = /B = /ZC = 4D = 90°.

The FLow Edge. A FLOW edge epow = (X,Y) indicates the flow direction
of instances during the exercise solving process, which may only exist from an
object node to an operation node, from an operation node to an object node, or
from an object node to a constraint node.

The FLOW edges between object nodes and operation nodes represent the
process of passing instances as parameters before the operation and the process
of returning a new instance after it. For example, in Fig. 2, the two FLOW edges
pointing to the operation node “addition” indicate that this operation takes two
instances of complex number as its input values, and the edge leading from this
operation node indicates that it returns a new instance of complex numbers.

conjugate pair

O Object Node

:' Operation Node
/____/ Constraint Node

—> Flow Edge

Real Number

O

Complex Number

z and y are
equal

Fig. 2. Example of the FLOW edges

The FLOW edges from object nodes to constraint nodes also represent the
process of passing parameters of the constraints. For example, in Fig. 2, the two
FLOW edges pointing to the constraint node “x and y are a conjugate pair” indi-
cates that this constraint takes two complex number as its input. Note that

A Knowledge Graph for Automatically Solving Mathematical Exercises 767

constraints nodes only convert descriptive constraints into other types of con-
straints and generate no instances, so there are no FLOW edges from a constraint
node to an object node.

In summary, MathGraph is a well-structured graph supporting different
mathematical objects, operations and constraints. Next, we will discuss how
to solve mathematical exercises using it.

5 Solving Mathematical Exercises with MathGraph

In this section, we propose a framework to solve a mathematical exercise using
MathGraph. First, we use a semantic parser mapping exercise text to the
instances, operations and constraints respectively. Then, we solve the constraints
and update uncertain instances. Finally, we return the answer of this exercise.

instances |x and y are complex numbers.

descriptive
constraint

It’s known that = and y are mutually conjugate.

Also, z +y =6, xzy = 10.

operation |Find the sum of z and .

Fig. 3. Example of parsing the text into nodes in MathGraph

5.1 Mapping Text in MathGraph

Considering the limited information and expression in the mathematical exer-
cises, we can easily use a rule-based semantic parser to parse the exercise text
and then map them to corresponding nodes in MathGraph.

The rule-based semantic parser uses a set of rules to parse every sentence of
the exercise and recognize the logical relationship in the text. For example, “Let
z and y be complex numbers” will be parsed as declaration of two uncertain
instances; “Find the coordinates of the conjugate complex of (i + 1)(i — 1)” will
be parsed as a declaration of a certain instance and two operations.

Mapping Instances. With the semantic parser, every instance generated from
the exercise should have already mapped into the corresponding object node.
That is, a set of instances Z = {(x1,X1), -, (zr, Xx)} is generated by pars-
ing the text of the exercise, where x; denotes the instance and X; denotes the
corresponding object node.

Instances are classified as certain instances or uncertain instances depending
on if the exercise provide certain values or expressions of them. For uncertain
instances generated from text, key properties with unknown value should be

768 T. Zhao et al.

generated as instances, since they may be used in the operations and constraints
of this exercise. For example, for the exercise shown in Fig. 3, = and y are both
uncertain instances of object node Complex Number. Therefore, we need to gen-
erate az,bs,ay and by as four uncertain instances of object node Real Number,
where a, and b, stand for the two key properties of z, and a, and b, stand for
the key properties of y.

Mapping Operations. The semantic parser can also parse out the a set of
operations from the text. Every operation (o, (x1, X1), - , (Zn, Xy)) in it will be
aligned to the corresponding operation node in MathGraph o with its operands,
trigger the function in the operation node, and then finally generate a new
instance as the output of the operation.

Mapping Constraints. Similar to mapping operations, for every descriptive
constraint (¢, (z1,X1), -, (zn, X)) in the exercise, the semantic parser can
map it to the corresponding constraint node ¢ with some involving instances,
trigger the function in the node, and convert it to several equality /inequality /set
constraints.

Also, note that when an uncertain instance is generated, some constraints
may also be generated according to the constraint set of the corresponding object
node. After that, we gather all the constraints in the exercise as a set for further
using.

Algorithm 1 shows the process of mapping text of the exercise.

5.2 Solving Uncertain Instances and Constraints

After parsing all the instances and operations in the exercise, the answer of the
exercise should already be generated as an instance (from the text or by an
operation). If this instance is a certain instance, we can directly return the value
of this instance as the answer; otherwise, we must deal with these uncertain
instances and solve the constraints in the exercise to update their values and
finally retrieve the answer of the exercise.

Reassign Uncertain Instances. First, we need to check every uncertain
instance if it can be reassigned to a more specific object node in MathGraph
by a DERIVE edge. For an uncertain instance ¢ that is assigned to an object node
v,, we check every outgoing DERIVE edge of v,, and if the function of an edge e
returns true, then we reassign i to the object node that e points to and add all
the constraints in this node to the constraint set. Algorithm 2 shows the pseudo
code of this process.

A Knowledge Graph for Automatically Solving Mathematical Exercises 769

For example, if we have an uncertain instance AABC, and there is a con-
straint /B = ZC in the constraint set, then the DERIVE edge from Triangle to
Isosceles Triangle should return true. So the instance should be reassigned
to Isosceles Triangle, and a new constraint AB = AC should be added to
the constraint set.

Algorithm 1. MAPPINGTEXT(, G)

Input: ¢ : text of the exercise;
G : MathGraph
Output: Zeertain: a set of certain instances;
Tuncertain: @ set of uncertain instances;
C: a set of constraints;
Sdependency: & set denoting dependencies of uncertain instances;

1 begin

2 Initialize P as a semantic parser;

3 Zcertain; Zuncertain < P.MAPPINGINSTANCES(¢, G);

4 O «— P.MAPPINGOPERATIONS(¢, G);

5 C «— P.MAPPINGCONSTRAINTS(t, G);

6 Let Sdependency be an empty set;

7 for each (z, X) € Zuncertain do

8 for each key property(p, X;,) € x.keyProperties do
9 if p is an uncertain instance then

10 L Iuncertain — Iuncertain U {(p7 XP)}7

11 Sdependency — Sdependency U {(p, JZ’)},
12 for each (o, (1, X1), -, (zx, X)) € O do

13 (v, Y)=o.f(x1, - ,xx);

14 if y is a certain instance then

15 ‘ Tecertain < Zuncertain U {(y, Y)},

16 else

17 Iuncertain — Iuncertain U {(ilh Y)}7

18 C «— S Uy.ConstraintSet;

19 for i =1 to k do

20 if z; is an uncertain instance then
21 L L Sdependency — Sdependency U {(1:17 y)}:

22 for each (¢, (z1,X1), -+, (zk, Xk)) € C do
23 if ¢ is a descriptive constraint then
24 L CHC'f(l’lf"axk);

25 return Ice'rtain7 Iunce'rtai’n» C7 Sdependency

770 T. Zhao et al.

Algorithm 2. REASSIGNUNCERTAININSTANCES(G, Zyncertain, C)

Input: G: MathGraph;
Tuncertain: the set of uncertain instances;
C: the constraint set;

1 begin

2 for each instance (x, X) € Zuncertain dO

3 for each DERIVE edge (X, Ye, fe) € G do
4 if X. == X and f.(z) == True then
5 C « C U Ye..ConstraintSet,

6 L update (z, X) as (z,Y);

Algorithm 3. ORGANIZEUNCERTAININSTANCES (Zuncertain; Sdependency)

Input: T ,certain: @ set of uncertain instances;

Sdependency: the set denoting dependencies of uncertain instances;
Output: G;: the graph to organize the uncertain instances;

S1: a set denoting all instances in Gy without incoming edges;

1 begin
2 Let Gr(V1, Er) be an empty graph;
3 for (z,y) € Sdependency do
4 V[HV]U{CE,Z/};
5 L Er — ErU{(z,y)};
6 S — {v|lv e Vi AVu € Vi, (u,v) ¢ Er};
7 return Gr, Sy

Organizing Uncertain Instances. Note that for two uncertain instances a
and (3, there may be a dependency relationship between them, which is caused
due to either « is one of the input of an operation node and 3 is the output or
« is one of the key properties of (.

Thus, we use a graph G; = (Vr, E) to describe dependency of all the uncer-
tain instances, where v € V is a node representing an uncertain instance and
e € E; is a directed edge representing a dependency relationship of two nodes.
Note that Gy is always a DAG, since there will be no dependency loop in it.

Let St = {v|v € Vi AVu € Vi, (u,v) ¢ Er} denote the set containing all node
without any incoming edges in G;. It is obvious that if all nodes in S; can turn
into certain instances, the instance corresponding to the answer can be derived
to a certain instance. Algorithm 3 demonstrates this process.

For example, Fig. 4 shows Gy of the exercise in Fig. 3, where x and y depend
on their respective key properties, and z = x+y depends on its two operands. In
this context, St = {az, bz, ay, by} and the instance corresponding to the answer
is z.

A Knowledge Graph for Automatically Solving Mathematical Exercises 771

Algorithm 4. PROCESSCONSTRAINTS(C, Gy, Sr)

Input: C: the constraint set;
Gr: the graph for dependency of uncertain instances;
Sy the set denoting all instances in G; without incoming edges;

1 begin

2 for each (¢, (z1,X1), -+, (zk, Xk)) € C do

3 for i =1 to k do

4 if x; ¢ St then

5 L L Replace (x;, X;) with its key properties (p1, P1), -, (Pn, Pn);

(=)

SOLVECONSTRAINTS(Sconstraint , ST);

Organizing and Solving Constraints. After the last step, we now have a set
of constraints. First, we need to make sure every variable in every constraint is
in S7. If not, this constraint needs to be rewritten by using its key properties
as the variable. For example, for the exercise in Fig. 3, the set of the constraint
is {x +y = 6,2y = 10,a, = ay,b, + by, = 0}. Since z,y ¢ Sy, the first two
constraints will be rewritten as a,+bgi+a,+by,i = 6 and (ay+b,7)(ay+byi) = 10.

Now the constraint set includes and formalizes all the constraints in the exer-
cise. So we can apply methods of a symbolic execution library [8,13] or some
approximation algorithms [5,15] to solve these equations and/or inequalities.
Finally, we will get the value (or range of value) of every instance in S;. Algo-
rithm 4 shows this process.

Updating Uncertain Instances and Retrieving the Answer. After solv-
ing all the constraints in the exercise, we need to update the value of the rest
instances in Gy. Since we now know the value of instances in S;, we can traverse
every instance in Gy in the topological sorting order and update their values in
turn. Finally, we return the value of the instance corresponding to the answer.
Algorithm 5 shows the complete process of using MathGraph to solve exercise.

Algorithm 5. SOLVINGEXERCISE(t, G)

Input: ¢ : text of the exercise;
G : MathGraph
Output: answer of the exercise
1 begin
2 ZLcertain, Zuncertain, C7 Sdependency — MAPPINGTEXT(t7 g)7
3 Mark the instance corresponding to the answer as Zans;
4 REASSIGNUNCERTAININSTANCES (G, Zuncertain, C);
5 G1,S81 <+ ORGANIZEUNCERTAININSTANCES(Zuncertain , Sdependency)
6 PrOCESSCONSTRAINTS(C, Sr);
7 Update the value of every node in G; in the topological sorting order;
| return value of Zans;

772 T. Zhao et al.

6

Experiments

In this section, we conduct extensive experiments on real mathematical datasets
to evaluate the performance of our method.

6.1 Datasets and Experiment Setting

We collect four real-world datasets of mathematical exercises of Chinese high
schools, namely Complex, Triangle, Conic and Solid. The exercises are stored
in plain text, and the mathematical expressions are stored in the LaTeX format.

Complex: This dataset contains 1526 mathematical exercises related to calcu-
lation and derivation of complex numbers, including basic algebraic operation,
the modulus and the conjugate of a complex number, Argand plane, polar
representation, etc.

Triangle: This dataset contains 782 mathematical exercises related to solv-
ing triangles (using Law of Sines and Law of Cosines), which includes finding
missing sides and angles, perimeter, area, radius of the circumscribed circle,
etc.

Conic: This dataset contains 1196 exercises related to Conic sections, includ-
ing calculation and derivation on ellipse, hyperbola and parabola.

Solid: This dataset contains 653 exercises related to solid geometry, which
involves a variety of geometries in three-dimension Euclidean space, including
pyramids, prisms, etc.

Exercises in the four datasets are categorized into three levels (i.e. easy,

medium, and hard) based on the difficulty (which is classified according to the
accuracy of many high school students). Table 3 shows the number of exercises
with different difficulty levels in the datasets.

Table 3. Summary of exercises in the datasets

Easy | Medium | Hard | Total
Complex |685 |634 207 | 1526
Triangle | 179 | 470 133 782
Conic 486 | 602 108 | 1196
Solid 217 | 336 100 653

In the experiments, we use Neo4j [14] as the graph database platform to build

and index MathGraph. For the datasets, we build the knowledge graph manually
involving only the instances, operations and constraints that may exist in these
exercises. The experiments are implemented in Python 3.7. Sympy is used to do
the work of symbolic execution. All the experiments are conducted in a machine
with 2.40 GHz Intel Xeon CPU E52630, 48 GB RAM, running Ubuntu 14.04.

A Knowledge Graph for Automatically Solving Mathematical Exercises 773

6.2 Evaluation and Discussion
We implement a rule-based baseline method as the following procedures:

1. We still use a rule-based semantic parser to parse the text and extract the
information.

2. A large quantity of rules are written in advance to match different situations
of exercises. Every rule represents an exercise type and has a built-in solving
process only for this exercise type.

3. If the exercise matches a rule, then we apply the solving process of the rule
and return the answer.

O
©

@?@@

Fig. 4. G;: a DAG to organize the uncertain instances

Il baseline B MathGraph

0_
Complex Triangle Conic Solid

Fig. 5. Overall accuracy on four datasets

Figure5 shows the exercise-solving accuracy on four datasets. We can see
that in every dataset, our method achieves higher accuracy than baseline, e.g.,
20% higher accuracy. This result shows the effectiveness of solving problems
using MathGraph.

Figure 6 demonstrates the exercise-solving accuracy on different difficulty
level. From the experiment result, we have the following observations. Firstly, as

774 T. Zhao et al.

Bl baseline mmm MathGraph Emm baseline mmm MathGraph

.0
Easy Medium Hard Easy Medium Hard

(a) Dataset Complex (b) Dataset Triangle

I baseline . MathGraph B baseline . MathGraph

.0
Easy Medium Hard Easy Medium Hard

(c) Dataset Conic (d) Dataset Solid

Fig. 6. Accuracy on different difficulty levels

the difficulty of the exercises increases, the accuracy of both methods decreases.
Secondly, for easy exercises, the baseline and our method have similar perfor-
mance; but for medium and hard exercises, MathGraph significantly outperforms
the baseline, because our method can use the knowledge graph to do mathemat-
ical derivation.

The rule-based baseline considers the exercise as a whole and solving it
according to the logic specified by a rule. This means that this method relies on
a large amount of rules, and the more complex the exercise is, the more rules
and the higher difficult it needs to write. Therefore, this method has a poor
performance in hard exercises. However, our method extracts the mathematical
objects, calculations, and constraints from these rules and models them into a
graph, so it can be used for multi-step calculation and derivation.

7 Conclusion

In this paper, we proposed MathGraph, a knowledge graph for automatically
solving mathematical exercises. MathGraph is specially designed to represent
different mathematical objects, operations and constraints. Given an exercise, we
can use the proposed method to solve it with the help of MathGraph and a pre-
built semantic parser. Experimental study on four real-world datasets demon-
strates the accuracy of our method.

Acknowledgements. This work was supported by the 973 Program of China
(2015CB358700), NSF of China (61632016, 61521002, 61661166012), and TAL
education.

A Knowledge Graph for Automatically Solving Mathematical Exercises 775

References

10.

11.

12.

13.

14.
15.

16.

17.

Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3), 50 (2018)

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell,
T.M.: Toward an architecture for never-ending language learning. In: Proceedings
of the Twenty-Fourth Conference on Artificial Intelligence (AAAT 2010), vol. 5, p.
3. Atlanta (2010)

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238-252. ACM (1977)

Dongo, L., Cardinale, Y., Chbeir, R.: RDF-F: RDF datatype inferring framework.
Data Sci. Eng. 3(2), 115-135 (2018)

Fletcher, R., Leyffer, S.: Filter-type algorithms for solving systems of algebraic
equations and inequalities. In: Di Pillo, G., Murli, A. (eds.) High Performance
Algorithms and Software for Nonlinear Optimization, pp. 265-284. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-1-4613-0241-4 12

Ganesalingam, M., Gowers, W.T.: A fully automatic theorem prover with human-
style output. J. Autom. Reason. 58(2), 253-291 (2017)

Guu, K., Miller, J., Liang, P.: Traversing knowledge graphs in vector space. In:
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, 17-21 September 2015, pp. 318-327
(2015)

Mathematica, Version 11.3. Wolfram Research, Inc., Champaign (2018)

King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385—
394 (1976)

Kojiri, T., Hosono, S., Watanabe, T.: Automatic generation of answers using solu-
tion network for mathematical exercises. In: Khosla, R., Howlett, R.J., Jain, L.C.
(eds.) KES 2005. LNCS (LNAI), vol. 3683, pp. 1303-1309. Springer, Heidelberg
(2005). https://doi.org/10.1007/11553939 181

Li, K., Li, G.: Approximate query processing: what is new and where to go? Data
Sci. Eng. 3(4), 379-397 (2018)

Lin, P., Song, Q., Wu, Y.: Fact checking in knowledge graphs with ontological
subgraph patterns. Data Sci. Eng. 3(4), 341-358 (2018)

Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3,
€103 (2017)

Neo4j, Inc.: Neo4j, Version 1.1.12. https://neodj.com/

Polyak, B.T.: Gradient methods for solving equations and inequalities. USSR Com-
put. Math. Math. Phys. 4(6), 17-32 (1964)

Tomas, A.P., Leal, J.P.: A CLP-based tool for computer aided generation and
solving of maths exercises. In: Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS,
vol. 2562, pp. 223-240. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36388-2 16

Toutanova, K., Lin, V., Yih, W.t., Poon, H., Quirk, C.: Compositional learning of
embeddings for relation paths in knowledge base and text. In: Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, pp. 1434-1444 (2016)

https://doi.org/10.1007/978-1-4613-0241-4_12
https://doi.org/10.1007/11553939_181
https://neo4j.com/
https://doi.org/10.1007/3-540-36388-2_16
https://doi.org/10.1007/3-540-36388-2_16

776

18.

19.

T. Zhao et al.

Zhang, Y., Dai, H., Kozareva, Z., Smola, A.J., Song, L.: Variational reasoning for
question answering with knowledge graph. In: Proceedings of the Thirty-Second
AAAT Conference on Artificial Intelligence (AAAI 2018), pp. 6069-6076 (2018)
Zheng, W., Yu, J.X., Zou, L., Cheng, H.: Question answering over knowledge
graphs: question understanding via template decomposition. Proc. VLDB Endow.
11(11), 1373-1386 (2018)

	MathGraph: A Knowledge Graph for Automatically Solving Mathematical Exercises
	1 Introduction
	2 Related Work
	2.1 Reasoning with Knowledge Graph
	2.2 Automated Solving Mathematical Problems

	3 Preliminaries
	4 The Structure of MathGraph
	4.1 Nodes
	4.2 Edges

	5 Solving Mathematical Exercises with MathGraph
	5.1 Mapping Text in MathGraph
	5.2 Solving Uncertain Instances and Constraints

	6 Experiments
	6.1 Datasets and Experiment Setting
	6.2 Evaluation and Discussion

	7 Conclusion
	References

