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Given a dataset with incomplete data (e.g., missing values), training a machine learning model over the incomplete data

requires two steps. First, it requires a data-efective step that cleans the data in order to improve the data quality (and the

model quality on the cleaned data). Second, it requires a data-eicient step that selects a core subset of the data (called coreset)
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such that the trained models on the entire data and the coreset have similar model quality, in order to save the computational

cost of training. The irst-data-efective-then-data-eicient methods are too costly, because they are expensive to clean the

whole data; while the irst-data-eicient-then-data-efective methods have low model quality, because they cannot select

high-quality coreset for incomplete data.

In this paper, we investigate the problem of coreset selection over incomplete data for data-efective and data-eicient

machine learning. The essential challenge is how to model the incomplete data for selecting high-quality coreset. To this end,

we propose the GoodCore framework towards selecting a good coreset over incomplete data with low cost. To model the

unknown complete data, we utilize the combinations of possible repairs as possible worlds of the incomplete data. Based

on possible worlds, GoodCore selects an expected optimal coreset through gradient approximation without training ML

models. We formally deine the expected optimal coreset selection problem, prove its NP-hardness, and propose a greedy

algorithm with an approximation ratio. To make GoodCore more eicient, we propose optimization methods that incorporate

human-in-the-loop imputation or automatic imputation method into our framework. Moreover, a group-based strategy is

utilized to further accelerate the coreset selection with incomplete data given large datasets. Experimental results show the

efectiveness and eiciency of our framework with low cost.

CCS Concepts: · Computing methodologies → Machine learning; Machine learning approaches; Machine learning

algorithms; · Information systems→ Data cleaning.

Additional Key Words and Phrases: data-centric AI; machine learning; data cleaning; coreset selection

1 Introduction

Data-efective machine learning (ML) (a.k.a. data-centric AI [66]) aims at obtaining high-quality training data to
release the value of AI, because it is well-known that dirty data may severely degrade the performance of ML
models [22, 65].
Data-eicient ML focuses on saving the training cost, i.e., making the training process more eicient. A

commonly used strategy is to select a core subset of training data (or coreset) [34, 62] to represent the entire
dataset such that ML models trained on the coreset can achieve similar performance to the ML models trained on
the entire dataset.
Apparently, users desire both data-efective ML (for training better ML models) and data-eicient ML (for

saving training cost). In this work, our main goal is to support both data-efective and data-eicient ML over
incomplete data where there are many missing values, which is very common in real-world scenarios [22, 57, 78].

Running data-efective and data-eicient tools sequentially. Intuitively, we can either run data imputation
methods irst for data-efective and then run coreset selection algorithms denoted by C(·) for data-eicient,
or vice versa. Moreover, for data-efective solutions through data cleaning, we generally consider two cases,
either human-based solutions denoted by H(·) or automatic solutions denoted by A(·). In summary, we have the
following four cases, as shown in Figure 1:

• First data-efective (impute) then data-eicient (coreset):

(1) Impute-Human: H(�) → Coreset: C(H(�))
(2) Impute-Auto: A(�) → Coreset: C(A(�))

• First data-eicient (coreset) then data-efective (impute):

(3) Coreset: C(�) → Impute-Human: H(C(�))
(4) Coreset: C(�) → Auto-Human: A(C(�))
Next let’s discuss the pros and cons of the above approaches.
Case (1) has high human cost, low machine cost, and high accuracy in terms of the trained ML models. Case (2)

has zero human cost, low machine cost, but with low accuracy because automatic imputation may not be good
enough. Case (3) has low human cost, low machine cost, but with low accuracy because corset selection over a
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Fig. 1. Sequential methods.

Solution Accuracy Human Cost Machine Cost

(1) C(H(�)) High High Low

(2) C(A(�)) Low None Low

(3) H(C(�)) Low Low Low

(4) A(C(�)) Low None Low

Our goal High None or Low Low or Very Low

(5) H(G(�)) High Low High

(6) A(G(�)) Medium None High

(7) G(�,⟲H) High Low Low

(8) G(�,⟲A) Medium None Low

(9) G+ (�,⟲H) High Low Very Low

(10) G+ (�,⟲A) Medium None Very Low

Fig. 2. A comparison of diferent approaches (1ś4: sequential methods; 5ś10: our solutions).

(7) G(�,⟲H) (5) H(G(�))

� // GoodCore //

Human⟲ 44

Auto⟲ **

G(�) // Impute

Human 55

Auto ))

(8) G(�,⟲A) (6) A(G(�))

Fig. 3. Our proposal and its variants.

dirty dataset may not ensure to compute a łgoodž coreset. Case (4) has no human cast, low machine cost, but with
low accuracy with the similar reason as (3). The comparison of the above four methods can be found in Figure 2.

Our goal. Clearly, a primary goal is to achieve high accuracy for ML models, where only case (1) can achieve.
Case (2) achieves low accuracy because automatic imputation is hard to be accurate. The main obstacle for making
(1) practical is its high human cost. Hence, our main goal is to achieve high accuracy with no or low human cost,
and with low machine cost.

Consider cases (3) and (4), the main reason for them to achieve low accuracy is because they cannot compute a
good coreset directly from the dirty data. Intuitively, if we can compute a good coreset directly from the dirty
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data, we can cheaply clean the coreset to achieve high accuracy, where the łgoodnessž means that the subset of
tuples selected from the dirty data is similar to the subset of tuples selected from the clean data.

Challenge. The main challenge of computing a good coreset from dirty data is to accurately estimate the ground
truth of each missing value; otherwise, we cannot select a coreset to well represent the clean data. This is a
known hard problem because each missing value may have multiple possible repairs. Also, because a coreset
selection algorithm is typically iterative that each tuple is selected per iteration [58], selecting a bad tuple may
cause cascade ampliication to the following iterations, resulting in a bad coreset.

Our proposal. To tackle the above challenge, we model the combinations of possible repairs as possible worlds
of the original dirty data � . We then formulate it as an optimization problem for selecting an expected optimal
coreset that can represent the possible worlds of � via gradient approximation without training in advance. We
prove this problem to be NP-hard. We propose an approximate algorithm, called GoodCore, denoted by G(·),
with the main idea to iteratively add a tuple with the highest utility into the coreset. After a good coreset is
computed, we can either use human imputation or automatic imputation to impute the data, as shown in Figure 3.
We further elaborate these two methods below:

(5) GoodCore: G(�) → Impute-Human: H(G(�))
(6) GoodCore: G(�) → Impute-Auto: A(G(�))
However, one main drawback is that modeling possible worlds of � is computationally expensive, which

hinders the practicability of the GoodCore algorithm. To address this high computational cost problem, we further
propose imputation-in-the-loop optimization (with either humans or automatic methods) into the GoodCore
algorithm (see methods 7 and 8 in Figure 3). To this end, the optimized algorithms can signiicantly reduce the
number of possible worlds, thus achieving low computational cost.

(7) GoodCore with human-in-the-loop imputation: G(�,⟲H)
(8) GoodCore with machine-in-the-loop imputation: G(�,⟲A)
Besides, since the above methods for coreset selection incorporate at least one iteration over the entire dataset,

it is not very eicient when the dataset is large, so we propose a group-based acceleration strategy to further
reduce the machine cost. The key idea is to assign similar tuples in � into a group and select a coreset to represent
these groups. Since the groups can still represent the distribution of � , the selected coreset is still well-performed.
In this way, we only need to iterate these groups, with a much smaller number than the tuples of � , and thus the
eiciency is improved. We also provide a theoretical analysis with respect to the group-based strategy. Hence, we
further have the following 2 methods.

(9) Group-based GoodCore (GoodCore+) with human-in-the-loop imputation: G+ (�,⟲H).
(10) GoodCore+ with machine-in-the-loop imputation: G+ (�,⟲A).
A comparison of methods (5)ś(10) is given in Figure 2. Note that method (10) is likely to be a good choice

because it can achieve a high ML accuracy with low human cost and low machine cost.

Contributions We make the following contributions.

(i) Two birds with one stone. We study the problem of solving both data-efective and data-eicient ML in one
framework, which is an important but not addressed problem. (Section 3)

(ii) NP-hardness and approximate solutions.We prove the NP-hardness of the problem. We propose a greedy
algorithm with an approximate ratio. (Section 4)

(iii) Imputation-in-the-loop optimizations. We develop optimization techniques that integrate imputation-in-the-
loop into the coreset selection process, to improve the eiciency while achieving high accuracy. We also
analyze the convergence rate of our method and theoretically prove that it can converge fast. (Section 5)

ACM Trans. Datab. Syst.
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(iv) Group-based acceleration.We develop group-based techniques to further improve the eiciency. We also
analyze the theoretical guarantee and convergence of the proposed techniques. (Section 6)

(v) Experiments. We conduct extensive experiment on 8 real-world datasets and compare with 10 baselines to
show that GoodCore can select a well-performed coreset to achieve both data-efective and data-eicient
ML while consuming a low human cost. (Section 7)

2 Background of Coreset Selection

In this section, we introduce the background of coreset selection on complete data, denoted by �� .

2.1 Gradient Descent for Machine Learning

Gradient descent [51] is the most typical optimization algorithm to train ML models. At a high level, it tweaks
the parameters iteratively to minimize a given convex and diferentiable function to its local minimum.

Let �� = {�1, �2, ..., ��} be a set of train tuples (without missing values), where �� = (x� , y� ), x� ∈ R� denotes the
vector of features and y� denotes the corresponding label. The goal of training on �� is to ind the best parameter
� ∗ of a model by minimizing the loss:

� ∗ = argmin
� ∈�

� (� ), � (� ) = 1

�

�︁

�=1

�� (�, �� ) (1)

where � is the parameter space. For ease of representation, we abbreviate �� (�, �� ) as �� (� ) to represent the loss of
the �-th train example. Generally speaking, the gradient descent approach is always applied to ind the minimizer
of Eq. 1, where the full gradient (sum of the gradients over all training tuples), denoted by ∇� (� ) = ∑�

�=1 ∇�� (� ),
has to be computed iteratively.

Besides incremental gradient methods like stochastic gradient descent (SGD) that can be leveraged to accelerate
the iterative gradient computation, there are other popular and orthogonal methods, such as coreset, which will
be discussed next.

2.2 Coreset over Complete Data

Coreset. To make training more eicient, instead of learning from entire �� , one research question is that
whether we can compute a small subset C(�� ) of �� such that learning with C(�� ) can hopefully achieve the
same performance as learning with �� . This small selected subset is called coreset [34, 62]. In the following, we
simply write C(�� ) as � when it is clear from the context.

The state-of-the-art coreset selection solutions are mostly based on gradient approximation [44, 58]. Suppose
that � denotes the parameter of an ML model trained over the full dataset, and � ′ denotes the parameter of the
same model trained over the coreset. Intuitively, the objective of gradient approximation for coreset selection is
to make ∇� (� ′) as close as possible to ∇� (� ). To this end, existing solutions focus on selecting the coreset that

minimizes the upper bound of gradient approximation error (∥∇� (� ) − ∇� (� ′)∥). Next, let’s formally deine it from
scratch.

Gradient-based coreset selection is to minimize the gradient approximation error (GA error) between the
full gradient w.r.t. �� and the weighted sum of gradients w.r.t. the coreset � (or coreset gradient). Formally, Eq. 2
tries to minimize the GA error by considering all possible parameters � ∈ � (� .� ., max

� ∈�
), where ł∥ · ∥ž denotes the

normed diference. Next, we introduce the coreset gradient.

ACM Trans. Datab. Syst.



6 • C. Chai et al.
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Coreset Selection

Fig. 4. Example of coreset selection.

�∗
= argmin
�⊆�� ,�� ≥0

max
� ∈�

∥
�︁

�=1

∇�� (� )

︸      ︷︷      ︸

full gradient

−
|� |︁

�=1

� �∇�� ( � ) (� )

︸              ︷︷              ︸

coreset gradient
︸                                ︷︷                                ︸

gradient approximation error

∥,

� .� . |� | ≤ �

(2)

Because the coreset is a subset of the complete dataset (� .� ., � ⊆ �� ), we use � ( �) = � (where � ∈ [1, |� |], � ∈
[1, �]) to denote that the �-th tuple in� (denoted by � � ) is the �-th tuple in �� , � .� ., �� . In other words, � is an index
mapping from � to �� .
Recall that the key idea of the coreset is to use a subset of tuples to represent the entire set. Eq. 2 potentially

contains another important mapping � from �� to � to indicate this, � .� ., � (�) = �, � ∈ [1, �], � ∈ [1, |� |], which is
highly related to the weight. Speciically, let � (�) = � denote that we will assign �� to � � (use � � to represent �� )
and use ∇�� ( � ) to represent ∇�� . Each �� will be assigned to one and only one � � , but each � � might be assigned
with multiple tuples in �� . Based on � ,� � is deined as the weight of the � � , which is the number of tuples in ��
assigned to the � � , � .� .,� � = |{�� |� (�) = �, � ∈ [1, �]}| (� � is utilized to represent� � tuples in �� ).

Next let’s use an example to better illustrate Eq. 2.

Example 1. Let’s consider a case of the gradients of each tuple, as shown in Figure 4. Suppose that for any � ,

∇�1 (� ) ≈ ∇�2 (� ), ∇�3 (� ) ≈ ∇�4 (� ) ≈ ∇�5 (� ) ≈ ∇�6 (� ) and ∇�7 (� ) ≈ ∇�8 (� ). In this case, based on Eq. 2, if one

wants to ind an optimal coreset with a size of 3, � .� ., � = 3, the solution can be �∗
= {�2, �5, �7} (� (1) = 2, � (2) = 5

and � (3) = 7), associated with �1 = 2,�2 = 4,�3 = 2 because � (1) = � (2) = 1, � (3) = � (4) = � (5) = � (6) = 2
and � (7) = � (8) = 3. In this way, �∗ can be one of the optimal coresets that can well approximate the full gradient

because ∥
8∑

�=1
∇�� (� ) −

3∑

�=1
� �∇�� ( � ) (� )∥ is minimized, which is close to 0.

Key observation.We can observe from Example 1 that in order to minimize the GA error, we should set � (�) = � ,
where ∇�� and ∇�� ( � ) are likely to be close. Therefore, computing the coreset is similar to computing the �
exemplars [67] of the gradients, if all the gradients of tuples can be computed.

Upper bound minimization of GA error. We can see from Eq. 2 that to solve the equation, the gradients have
to be computed, which have a close relationship with the parameter � . However, the main bottleneck is that
the entire parameter space � is too expensive to explore. Hence, a typical solution is to irst compute the upper
bound of GA error (Eq. 3), then generalize [8, 37, 58] the upper bound computation to the entire parameter space

ACM Trans. Datab. Syst.



Cost-efective Missing Value Imputation for Data-efective Machine Learning • 7

(Eq. 4), and inally select the coreset to minimize the bound. To be speciic, using the triangle equation, for any
particular � , we have:

∥
�∑

�=1
∇�� (� ) −

|� |∑

�=1
� �∇�� ( � ) (� )∥ ≤

�∑

�=1
∥∇�� (� ) − ∇�� (�� (� ) ) (� )∥ (3)

Together with the aforementioned observation, given a coreset � , the upper bound is minimized when �

assigns every tuple �� to the tuple in � with most gradient similarity, � .� ., ∥
�∑

�=1
∇�� (� ) −

|� |∑

�=1
� �∇�� ( � ) (� )∥ ≤

�∑

�=1
min
� � ∈�

∥∇�� (� ) − ∇�� ( � ) (� )∥.

For the entire space � , it has been proved in recent works [8, 37, 58] that for convex ML problems (corresponding
to an optimization problem in which the objective function is a convex function), the normed gradient diference
between tuples can be eiciently bounded by:

∀�, �,max
� ∈�

∥∇�� (� ) − ∇�� (� )∥ ≤ max
� ∈�

O(∥� ∥) · ∥x� − x� ∥ (4)

where ∥x� − x� ∥ is the Euclidean distance between feature vectors of two tuples, namely feature distance, and
O(∥� ∥) is a constant. Hence, we can conclude thatGA error can be bounded independent of the optimization

problem in practice, � .� ., any particular � . Finally, considering Eq. 3 and Eq. 4 together, the coreset selection
problem can be converted to:

�∗
= argmin

�⊆��

�︁

�=1

min
� � ∈�

�� � , s.t. |� | ≤ � (5)

where �� � = ∥x� − x� ( � ) ∥ for ease of representation. The above equation indicates that given a train data �� and
a coreset � , we use � =

∑�
�=1 min� � ∈� �� � to score the coreset. The lower the score, the smaller upper bound of

the GA error we can get, which indicates a better coreset. To summarize, solving Eq. 5 is to minimize the upper
bound of the GA error (� .� ., select the coreset with the lowest score) by just considering the feature vectors of the
training tuples without training in advance.
Note that Eq. 4 holds for tuples associated with the same label [8, 37]. Therefore, in practice, we respectively

select coresets for tuples with diferent labels and combine them. Suppose that we aim to select a coreset with
size � for a binary classiication task (label 1: 60%, label 0: 40%), so we select a coreset with size 60%� for tuples
with label 1 and another one with 40%� for tuples with label 0.

Our scope. In this paper, we focus on the convex problems (�.�., logistic regression, support vector machine,
etc.) because for such problems the gradient diference can be well bounded by the diference between feature
vectors. Note that, for other ML algorithms such as deep neural networks, they can also be trained using selected
coreset to achieve good training accuracy (see Section 7 for our experimental indings).

3 Coreset Over Incomplete Data

In this section, we will formally deine the problem of coreset selection over incomplete data (Section 3.1) and
then describe our proposed framework to solve the problem (Section 3.2).

3.1 Problem Definition

As discussed above, we have to compute the coreset score � , so as to produce a good coreset. To this end, the
feature distances can be computed as a pre-processing step, based on which the coreset score can be computed.
However, when there exists incomplete data with missing values, even the feature distances are hard to compute
accurately, let alone selecting a proper coreset.
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Fig. 5. Example of coreset selection with missing values

.

Incomplete data. Formally, suppose that � has � attributes, denoted by {A1,A2, ...,A� }. Each attribute
A�,� ∈ [1, �] represents a domain set including the Null, (� .� ., Null ∈ A�), in which each tuple in � can take
value on this attribute. |A� | denotes the domain size. Then, each tuple �� ∈ A1 ×A2×, ...,×A� . Let �� [�] denote
the value of the�−th attribute of �� , � .� ., �� [�] ∈ A� .
For a tuple �� ∈ � , if ∃ �� [�] = Null,� ∈ [1, �], �� is an incomplete tuple, denoted by I[�� ] = 1, otherwise

I[�� ] = 0. Let us better illustrate this using an example.

Example 2. As shown in Figure 5(a), there are 6 tuples in the table � with ive attributes (an excerpt from a large

table). For example, A2 is the Gender attribute, � .� ., A2 = {M, F, Null}. Among these tuples, �2, �3, �4, �6 have missing

values, �.�., I[�2] = 1, I[�1] = 0. Given a coreset as shown on the right side, if there are no missing values, we can

assign each tuple �� ∈ � to its most similar tuple in � (compute min� � ∈� �� � ), and then sum these feature distances

up to compute the coreset score � . However, given these missing values, the feature distances cannot be computed

accurately (�.�., �12, �13, �22, etc.), and thus the assignment of tuples in � cannot be determined precisely. Hence, the

coreset score is not precise, and thereby leads to a coreset that cannot well represent the full complete (clean) data.

As discussed above, imputation before coreset selection sufers from either large cost (human imputation) or
large number of possible repairs (automatic imputation), while imputation after coreset selection cannot obtain a
good coreset because of the inaccurate feature distance computation (see Example 2).
Therefore, an essential problem is to select a good coreset that can represent the complete dataset �� , which

relies on accurate coreset score computation given �� that is the unknown ground truth. Fortunately, the possible
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repairs of � can be modeled by possible worlds [11ś13, 26], based on which we can efectively select the coreset
over incomplete data.

Possible worlds. Given the incomplete dataset � , ∀� ∈ � and I[�] = 1, ∀� [�] = Null,� ∈ [1, �], we assign a
value in A� \ {Null} to � [�] as an imputation (a.k.a. a possible repair). Thus, we have an assignment for all
the missing values in � , which corresponds to a possible world� . Since there exist a large number of possible
assignments, we deine the set of possible worlds as IW = {�� |� ∈ [1, |IW |]}.

Let us better illustrate this using an example.

Example 3. Given � , for tuples �2, �3, �4, �6 with missing values, we have a large number of possible assignment

as shown in Figure. 5(b), each of which corresponds to a possible world (we omit the Name attribute because there

is no missing value on this attribute). Suppose that there are 2 (4/100/10) types of values of the attribute Gender

(Department/Age/Working years), there exist 32,000 possible worlds in total.

Note that for numerical attributes, we will bin them into diferent buckets, such that we can treat them as
categorical values and avoid the unlimited number of possible worlds.

Even with possible worlds, the score computation of coreset remains challenging. Each possible world of � is a
complete dataset, and thus given a coreset, the score can be directly computed considering the feature distances,
as discussed in Section 2.2. However, the crucial issue is that each possible world could be the ground truth, � .� .,
�� , but each one leads to a diferent score.

Example 4. As shown in Figure. 5(b), the two possible worlds�1 and�2 are only diferent in �3, leading to a

diferent feature vector x3, which makes the score computation a diference. To be speciic, given the same coreset �

with tuples �1 (�1), �3 (�2) and �4 (�3), because of a diferent x3, the closest feature distance of x5 in�2 becomes x1,

rather than x3 in�1. And the closest feature distance of x6 in�2 becomes x3, rather than x4 in�1. Therefore, the

coreset scores, � .� ., the sum of these closest feature distances of tuples are diferent among possible worlds.

Example 4 shows that diferent possible worlds make the mapping � diferent, which leads to diferent scores.
Hence, to get a good coreset without the ground truth, an intuitive solution is to compute the expected coreset
score considering all possible worlds. By doing so, although we cannot get the complete data (�� ) in advance, we
can focus on how to select an informative coreset that can represent the possible worlds of � .

Next, we formally deine the studied problem.

Expected optimal coreset selection over incomplete data. Given � , we have a number of possible worlds
IW = {�� }. Then given a subset (coreset) � ⊂ � , for diferent�� , we have the corresponding �� with the same
tuples as � but probably diferent imputations. For �� , we can compute a score �� =

∑�
�=1 min� � ∈��

�� � , where

�� � = ∥x� − x� ( � ) ∥ and both feature vectors are from {�� }. Then, we have the expectation E[�] = ∑ | IW |
�=1

���� ,
where �� denotes the probability of the appearance of {�� }. Finally, our problem becomes how to compute the
coreset � with the lowest expectation of GA error upper-bound. Formally, we have

�∗
= argmin

�⊆�
E[�], s.t. |� | ≤ � (6)

For example, given � , the corresponding possible worlds and a coreset� in Figure 5, we have diferent�� with
the same tuples (containing �1, �3, �4) but probably diferent imputations. For each �� , we will compute �� , and
inally compute E[�]. Solving Eq. 6 can result in an informative coreset with incomplete tuples being selected.
After these tuples imputed by a human, � .� ., Case (5), or state-of-the-art automatic method, � .� ., Case (6), we can
derive a good coreset.
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Fig. 6. The GoodCore framework.

3.2 Goodcore Framework

Next, we will introduce our proposed GoodCore framework to solve Eq. 6, which is non-trivial because it is
NP-hard. But fortunately, we prove that it has the sub-modular property (see Section 4). Hence, GoodCore uses a
greedy framework with three loops to solve the problem with an approximate ratio.
At a high level, the greedy strategy adds one tuple with the largest łutilityž to the coreset iteratively, which

can be considered as the irst loop. In each iteration, we have to iterate tuples in � to select the one with the
largest utility, which is the second loop. Naturally, we have to compute the utility of each tuple, where all tuples
in � have to be considered, leading to the third loop.

Next, we will further illustrate the framework using Figure 6 and Algorithm 1.

The irst loop (lines 3-9) of the greedy algorithm is to add the tuple �∗ with the maximum utility (� .� ., E[� |�] =
E[�] − E[� ∪ {�}]) into the coreset iteratively for � times. To be speciic, the łutilityž of a tuple � denotes the
reduction of expectation of GA error after adding � into the coreset � .

Suppose that � = 3. Figure 6 (the 1�� loop part) shows the situation that there already have been 2 tuples in � ,
and we are going to add the third tuple into the coreset.

The second loop (lines 6-7) computes the utilities of tuples that are not in coreset � , based on which the best
one is picked for the irst loop. An ideal solution is to consider all tuples in � \� , which is prohibitively expensive,
so in practice we use an eicient method to accelerate this loop by uniformly sampling ℎ tuples as ������� (line 5)
and then selecting the best one from ������� (line 14). The diference is that theoretically, considering all tuples

has an approximate ratio 1- 1
�
(because of the sub-modular property), while the sampling method holds a (1- 1

�
− �)

ratio [61], where � is related to the sampling ratio.
As shown in Figure 6, suppose that ℎ = 3, and we sample {�3, �4, �6} from {�1, �3, �4, �6}. Then the second loop

iterates the three tuples and computes the utility for each one (the third loop).

The third loop (line 7) will loop through all tuples in � , so as to compute the utility of tuple � used in
the second loop. To be speciic, the core part of the utility computation (� .� ., ComputeUtility) is to compute

E[�] = ∑ | IW |
�=1

���� =

∑ | IW |
�=1

�� (
∑�
�=1 min� � ∈��

�� � ), from which we can see that it is inevitable to iterate the �
tuples in � . However, the most challenging part is that we also have to enumerate a large number of possible
worlds. We will illustrate how to solve this in details in Section 4.
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Algorithm 1: GoodCore Framework

Input: Incomplete train data � , coreset size � , sample size ℎ.

Output: A coreset � ⊆ � , weightW = {� � },|� | = |W| = � .
1 � = ∅;
2 while |� | < � do

3 /*1st loop*/

4 Sample ℎ tuples as ������� ⊆ � \�
5 for each tuple � ∈ ������� do
6 /*2nd loop*/

7 E[� |�] = ComputeUtility(�,�, �); /*3rd loop*/

8 �∗ = argmax� ∈�������
E[� |�] ;

9 � = � ∪ {�∗};
10 for � ∈ � do

11 if I[�] = 1 then

12 Impute � by a human or automatic method.

13 for � = 1 to |� | do
14 for � = 1 to n do

15 if � � = argmin� � ′ ∈� max
� ∈�

∥∇�� (� ) − ∇�� ( � ′ ) (� )∥ then
16 � � += 1;

17 return �,W;

The imputation step (line 12). After GoodCore selects the coreset � using the above 3 loops, we can leverage a
human or automatic method to impute the tuples that are incomplete in � , which correspond to Case (5) and
Case (6) in Section 1 respectively.

Weights computation (lines 20-23). It computes the weight of each tuple in� , which will be used to approximate
the full gradient during training. For training, tuples in the coreset are randomly shuled. Afterwards, suppose
that in each step of the gradient decent, when we use � � ∈ � to update the gradient, we compute the gradient
(∇�� ) of � � irst, and then use� �∇�� to update the model parameters.� � is the number of tuples in � assigned to
� � . The above steps repeat until the model converges.

Imputation-in-the-loop optimizations. Unfortunately, the 3-loop computation of the strategy is rather
expensive due to the large number of possible worlds (Section 4). To address this, we can integrate either human-
in-the-loop or the automatic method into GoodCore framework (Section 5). It iteratively imputes one incomplete
tuple or a mini-batch of incomplete tuples. Once the tuple(s) is (are) computed and added to the coreset within
the irst loop, the number of possible worlds can be signiicantly reduced, and so does the computational cost.

Group-based acceleration. As discussed above, we have to iterate all tuples of � in the third loop to compute
the utility of a tuple � . Given a large train set with missing values, it is still ineicient to compute the coreset. To
address this, we propose to assign tuples in � to multiple groups, and use these groups to represent the entire
dataset. Since the number of groups are smaller than �, the eiciency can be much improved (Section 6).
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4 Goodcore Algorithm

In this section, we will illustrate GoodCore algorithm in details for solving Eq. 6, which is proven to be prohibitively
expensive (Section 4.1). Then we focus on how to compute the expectation using possible worlds (Section 4.2) in
the algorithm.

4.1 Problem Complexity

Let us irst discuss the time complexity of inding the optimum of Eq. 6.

Theorem 1. The problem of expected optimal coreset selection over incomplete data is NP-hard.

Proof. Let us consider a special case that there is no missing value in � . Our problem becomes the typical
coreset selection problem over complete data, which has been proven to be NP-hard by reduction from the
Minimum Vertex Cover problem [32, 58, 59]. Hence, our problem is also NP-hard. □

Theorem 2. The problem of expected optimal coreset selection over incomplete data has the sub-modular property.

Proof. First, we regard E[�] = ∑ | IW |
�=1

���� as a utility function, where �� =

∑�
�=1 min� � ∈��

�� � . In fact, �� can
be regarded as a function of the coreset score computation over complete data, which has already proven to have
the sub-modular property [42, 58, 59]. Therefore, consider the property that a non-negative linear combination of
sub-modular functions is also sub-modular [53]. To be speciic, given any sub-modular function �1, �2, . . . , �� and

non-negative numbers �1, �2, . . . , �� . Then the function G deined by G =

∑�
�=1 ���� is sub-modular. Hence, we

can conclude that our studied problem is a sub-modular problem because E[�] = ∑ | IW |
�=1

���� , where �� > 0. □

The greedy algorithm. Given the sub-modular property, naturally, we can design a greedy algorithm with an
approximate ratio. As shown in Algorithm 1, we greedily add one tuple to the coreset at each iteration. The added
tuple should have the largest utility computed by E[� |�] = E[�] − E[� ∪ {�}]. Hence, the key component is that
given the original train data (�) and a coreset (� or � ∪ {�}), how to compute the expectation of GA error (E[�]
or E[� ∪ {�}]) of the coreset. However, it is non-trivial because of the large number of possible worlds. We will
irst introduce how to compute the probability �� , and describe the expectation computation in Section 4.2. After
� tuples are added, we can impute missing tuples in the coreset generated by GoodCore.

4.2 Expectation Computation

Possible world probability. To compute the expectation, it is inevitable to derive the probability of each possible
world, which can be taken as a pre-processing step in our framework. To be speciic, since tuples with missing
values are always imputed independently [57], given a possible world�� , the probability �� can be computed by
�� =

∏

� ∈�� ,I[� ]=1
��
�
, where ��

�
denotes the probability of the appearance of tuple � with I[�] = 1. Besides, apparently

��
�
= 1 when I[�] = 0, so �� = 1 if there are only complete tuples. Therefore, our focus is on how to get the value

of ��
�
, which can be solved by many approaches, like statistic methods and learning-based methods (see [57] for a

survey). In this paper, we use the learning-based method [14] with a Python library [1] to generate the probability,
which can be easily replaced by other libraries or domain-speciic methods. During training, learning-based
methods take � as input and learn a model M to describe the joint data distribution. For inference, we have
� (A� |x, ����� ) = M(x, ����� , �∗), where the model takes as input the feature vector x of � , the mask vector �����
(indicating which attributes are missing) and the model parameter �∗, outputs the probability distribution of a
missing attribute A� .

Suppose that � just has one missing attribute A� , and then ����� is a one-hot vector with ����� [�] = 0. Hence,
we can directly obtain ��

�
from the distribution � (A� |x, ����� ). For � with multiple missing attributes, we can also
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Fig. 7. Tuple-based expectation computation.

compute ��
�
using the chain rule. If � has two missing values of A� and A � , to compute ��

�
, we have to compute

� (A� ,A � |x, ����� ), abbreviated as � (A� ,A � ) = � (A� )� (A � |A� ). � (A� ) can be obtained by masking the �-th
and �-th attribute in ����� . Then, we only mask the �-th attribute and impute diferent values of A� to obtain
� (A � |A� ).

Example 5. In Figure 5(a), suppose that for the irst possible world, we have to compute �1 = �
2
1 × �31 × �41 × �61 .

For instance, to compute �31 , given the trained deep learning model, we feed {Lei, M, Mask, 35, Mask} and a one-hot
vector {1, 1, 0, 1, 0} into the model and compute the probability distribution of this tuple, from which we can get �31 ,

� .� ., the probability of {Lei, M, Sales, 35, 1}.

Compared with statistical approaches, deep learning-based methods use more powerful models with good
learning capacity and consider the correlation between attributes. For practitioners, they can use any ad-hoc
method to compute the probability.

Brute-force expectation computation. Recap that E[�] = ∑ | IW |
�=1

�� (
∑�
�=1 min� � ∈��

�� � ). Intuitively, the brute-
force method is to enumerate each possible world, compute the probability and inally get the expectation.
However, there are a huge number of possible worlds, which makes the computation prohibitively expensive.
Speciically, we assume the attribute number� and |A� |,� ∈ [1, �] are constants, so the number of possible
worlds of each tuple is a constant, denoted by �. Suppose that the number of tuples with missing values is � (�),
so the number of possible worlds (|IW |) is � (��). Given a coreset � , the time complexity to compute E[�] is
� (���), which is rather expensive.

Tuple-based expectation computation. To further elaborate, we can easily expand E[�] as follows:

E[�] =�1 (min
� � ∈�1

�1�
✿✿✿✿✿✿✿✿

+ min
� � ∈�1

�2� + · · · + min
� � ∈�1

��� )

+ �2 (min
� � ∈�2

�1�
✿✿✿✿✿✿✿✿

+ min
� � ∈�2

�2� + · · · + min
� � ∈�2

��� ) + · · ·

+ � | IW | ( min
� � ∈� |IW |

�1�

✿✿✿✿✿✿✿✿✿✿✿✿✿

+ min
� � ∈� |IW |

�2� + · · · + min
� � ∈� |IW |

��� ).

We can see from the above equation that these underlined terms are only related to �1 ∈ � as well as
{�1,�2, · · · ,� | IW | }, � .� ., the coresets corresponding to the |IW | possible worlds. However, as the coreset �
is much smaller than the full data � , the number of possible worlds of� will be also much smaller than |IW |, and
thus there will be many duplicates among {�1,�2, · · · ,� | IW | }. Therefore, many of these underlined terms have
identical variable parts, � .� ., min� � ∈��

�1� , when they are associated with the same �� . These terms are like terms.
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Combining these like terms (� .� .,
∑ | IW |
�=1

�� min� � ∈��
�1� ), we can get the expectation of min� � ∈� �1� , denoted by

E[min� � ∈� �1� ].
In short, we can convert the expectation computation over the possible worlds of the entire training set � to

the sum of expectation of each tuple in � , as follows:

E[�] =
| IW |︁

�=1

�� (
�︁

�=1

min
� � ∈��

�� � ) =
�︁

�=1

E[min
� � ∈�

�� � ] (7)

Example 6. Figure 7 shows how to compute E[min� � ∈� �2� ]. Instead of enumerating |IW | possible worlds by the

brute-force method, we can enumerate a much smaller number of possible worlds of� ∪ �2, compute the corresponding

probabilities and inally get the tuple expectation. Speciically, The left part of Figure 7 shows the possible worlds of

the tuple, the right part shows the possible worlds of the coreset, and their combination is the possible worlds of� ∪ �2.
Then, following Eq. 7, we can iterate the tuples in � , compute their expectations and sum them up to derive E[�].

Time complexity. Since the coreset size is � , and the number of tuples with missing values in the coreset is
� (�), the time complexity of computing E[�] using tuple-based method is � (��� ), where � is much smaller
than �, compared with the brute-force method. However, note that computing E[�] is just the third loop in
the entire framework. Besides, the irst two loops incrementally add � tuples into the coreset, and sample ℎ
tuples for tuple selection respectively. Hence, the overall time complexity of coreset selection over incomplete
data is � (�ℎ��� ), which is still expensive when � is not small enough. In the next section, we involve the
imputation-in-the-loop strategies to achieve further improvement.

5 Optimized Goodcore with Imputation-in-the-loop

As discussed above, it is rather expensive to directly compute all the � tuples in the coreset. Hence, in this section,
we propose to involve the imputation-in-the-loop mechanism that asks the human, � .� ., Case (7), or automatic
method, � .� ., Case (8) to impute these missing values iteratively while they are generated by Algorithm 1.

The advantages of this optimization are two-fold. First, with more and more missing values being imputed, the
number of possible worlds is greatly reduced, which reduces the machine cost a lot. Second, for human-in-the-loop
imputation, it allows us to gradually impute the tuples accurately, and thus the coreset score computation can be
more and more accurate, which produces a better coreset.

5.1 One Tuple Each Iteration

In fact, we can just slightly modify Algorithm 1 to achieve the imputation-in-the-loop strategy. To be speciic,
in the irst loop, we will iteratively impute the tuple once an incomplete tuple �∗ is computed by GoodCore, rather
than conducting the imputation after � tuples are computed, as discussed in Section 4. To this end, we move the
imputation step (lines 11-12 in Algorithm 1) inside the irst loop of Algorthm 1, � .� ., imputing each selected �∗ by
a human or automatic method in each iteration after line 9.

Afterwards, we will add the next tuple into the coreset, so another loop starts and ℎ tuples are sampled. In the
following, we will expand the third loop, � .� ., the function ComputeUtility (line 7) of Algorithm 1 under this
one tuple per iteration scenario.
As shown in Algorithm 2, at the beginning, we temporarily add the sampled tuple � to the current coreset,

so as to compute the beneit of � , � .� ., E[� |�]. To this end, we have to irst compute the expectation of GA error

bound of �̂ (� .� ., computing E[�̂] in the for-loop lines 3-12). And the expectation w.r.t. � (� .� ., E[�]) has been
computed in the last loop. Then we can compute E[� |�] = E[�] − E[�̂] (line 10).
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Algorithm 2: ComputeUtility (3rd-loop to compute E[� |�])
Input: Incomplete train data � , current coreset � , a sampled tuple � .

Output: The expectation E[� |�].
1 �̂ = � ∪ {�};
2 E[�̂] = 0;

3 for each tuple �� ∈ � do

4 if I[�] = 0 and I[�� ] = 0 then

5 E[�̂]+= min
� � ∈�̂ �� � ;

6 else

7 Get the possible worlds of �̂ ∪ {�� };
8 Compute E[min

� � ∈�̂ �� � ] using these possible worlds and their probabilities;

9 E[�̂]+= E[min
� � ∈�̂ �� � ];

10 E[� |�] = E[�] − E[�̂];
11 return E[� |�];

Speciically, to compute E[�̂], we will use the tuple-based expectation computation method proposed in
Section 4.2. For each tuple �� ∈ � , if �� and � are both complete, we can directly compute min� � ∈�̂ �� � because there

is no incomplete data in �̂ (lines 4-5). Otherwise, we will enumerate the possible worlds of �̂ ∪ {�� }, compute
their probabilities and compute E[min� � ∈�̂ �� � ] (lines 7-8). Note that since there are at most two tuples (� .� ., ��

and � ) have missing values, the number of possible worlds is small because other missing values in �̂ have been
imputed by humans in previous iterations.

Time complexity analysis. As discussed above, using this human-in-the-loop strategy, the number of possible
worlds to be considered is greatly reduced. For Algorithm 2, the time complexity is � (��2) because there are at
most two incomplete tuples in �̂ . For the entire three loops framework, the time complexity can be regarded as
� (�ℎ�) because � is a constant, which is much lower than the solution without imputation in the loop.

However, if we utilize the human for imputation, the above method will incorporate many human iterations.
In the following, we propose to ask human to impute a small batch of missing tuples in each iteration, so as to
reduce the number of human iterations.

5.2 One Batch Each Iteration with Human-in-the-loop

In Section 5.1, one tuple per iteration by humans requires many human iterations. However, if we just incorporate
a single human iteration like Section 4.2, it is infeasible to compute the tuples to be imputed due to the large
number of possible worlds. Therefore, in this subsection, we propose a trade-of solution that asks the human to
impute a small batch of tuples per human iteration.

To be speciic, as shown in Algorithm 3, compared with the one tuple per human iteration algorithm (� .� ., the
modiied Algorithm 1 at the beginning of Section 5.1), we additionally take the batch size � as input (when � = 1,
Algorithm 3 is in fact the modiied Algorithm 1). Algorithm 3 also incorporates 3 loops, but the main diference is
that we do not instantly ask the human to impute the most beneicial tuple �∗ among������� . Instead, we just add
�∗ into the coreset� (line 7). When there have been � incomplete tuples, we ask the human to impute these tuples
together (line 17-19). Finally we compute the weight (line 13), same as Algorithm 1. Although this approach
reduces the number of human iterations, it takes a longer time to compute E[� |�] (line 5) than Algorithm 1
because there are more incomplete tuples, which indicates more possible worlds. Speciically, the time complexity
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Algorithm 3: Batch algorithm of GoodCore

Input: � , � , ℎ, batch size �.

Output: A coreset � , weight W.

1 � = ∅, ��� = 0;

2 while |� | < � do

3 Sample ℎ tuples as ������� ⊆ � \�
4 for each tuple � ∈ ������� do
5 E[� |�] = ComputeUtility(�,�, �);
6 �∗ = argmax� ∈�������

E[� |�] ;
7 � = � ∪ {�∗};
8 if I[�∗] = 1 then

9 ��� + +;
10 if ��� = � then

11 Ask the human to impute the incomplete tuples;

12 ��� = 0;

13 Compute the weightW.

14 return �,W;

of computing E[� |�] is � (���), which is also expensive. Hence, we propose a heuristic method to accelerate this
process as follows.

Reducing the number of possible worlds. A straightforward method of improving the eiciency is to reduce
the number of possible worlds. To this end, intuitively, we should focus more on the possible world with a high
probability, so these possible worlds with low probabilities can be pruned without sacriicing the accuracy of
expectation computationmuch. Note that for each possible world, the probability is computed by themultiplication
of the probabilities of incomplete tuples in the world because the tuples can be considered independent [57].
Therefore, we can remove the possible worlds of each tuple with low probabilities (� .� ., reducing �), and thus the
number of possible worlds of the entire coreset is greatly reduced. For example, we can keep top-� (�.�., � = 3)
possible worlds (� .� ., 3 diferent possible imputations of � with high probabilities) of a tuple � . Then for the batch
of � incomplete tuples, the number of possible worlds is �� and the complexity of computing E[� |�] is � (���),
where both � and � are small enough. Therefore, the time complexity is � (�ℎ�). Besides, we can also apply this
heuristic method to make the algorithm in Section 4 practical, which is evaluated in Section 7.5.

5.3 Convergence Rate Analysis

Convergence rate is often used to relect the speed of inding the optimal parameters for the machine learning
algorithm. With a higher convergence rate, we can take fewer epochs to make the model converge. To compute
the convergence rate, we have to compute the distance between the parameter � and the optimal parameter � ∗ in
the �-th and the (� + 1)-th epoch. Since � is a strongly convex function, ∀�, � ′ we have

� (� ) − � (� ′) ≥ ∇� (� ′) (� − � ′) + �
2
∥� − � ′∥2 (8)

where � is a constant. We denote the stepsize as �� =
�0
��

for the �-th epoch, where � is a constant. After using

gradient descent in each step, we have ∥� �+1 − � ∗∥2 = ∥� � − ��
∑ |� |
�=1� �∇�� ( � ) (� ��−1) − � ∗∥2. Then, following Eq. 8,

we have
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∥��+1 − �∗∥2 ≤ ∥�� − �∗∥2 − 2��

|� |︁

�=1

(�� (�� ) − �� (�∗))

+2��
|� |︁

�=1

(�� (���−1) − �� (�
� )) + � 2�

|� |︁

�=1

∥� �∇�� (���−1)∥
2

(9)

Recap that we select a coreset that minimizes E[�] through converting gradient diference to feature dis-
tance (�� � ) computation. Obviously, given a dataset, �� � can be bounded (suppose that �� � ≤ �0). Then we have

E[min� � ∈� �� � ] =
∑ | IW |
�=1

�� (min� � ∈��
�� � ) ≤

∑ | IW |
�=1

�� ∗ �0 = �0, and thus E[�] = ∑�
�=1 E[min� � ∈� �� � ] ≤ � ∗ �0 = �1.

Besides, we also have���� ∈� ∥
∑�
�=1 ∇�� (� )−

∑ |� |
�=1� �∇�� ( � ) (� )∥ ≤

�∑

�=1
min
� � ∈�

∥∇�� (� )−∇�� ( � ) (� )∥ ≤
�∑

�=1
min
� � ∈�

�� � ≤ �1.

Following the deinition of convex function, we have �� (� � ) − �� (� ∗) ≤ � �∇�� (� ∗) (� � − � ∗) + �

2 ∥� � − � ∗∥2. Based
on the above things, we can apply Cauchy-Schwarz inequlity [74] and derive

− 2��

|� |︁

�=1

(�� (�� ) − �� (�∗))

≤ − ��� ∥�� − �∗∥2 + 2�� ∥
|� |︁

�=1

� �∇�� (�∗)∥∥(�� − �∗)∥

≤ − �� � ∥�� − �∗∥2 + 2� � |� |�1�2
�

(10)

where�2 can be regarded as the upper bound of ∥��−� ∗∥. Since � is convex, thus, for item �� (� ��−1)−�� (� � ), we have
�� (� ��−1)−�� (� � ) ≤ ∥� �∇�� (� � )∥��

∑�−1
�=1 ∥��∇�� (� ��−1)∥. In addition, we can assume that��� �∈{1,· · · , |� | } ∥∇�� (� )∥ ≤

�3. Then, we have

2��

|� |︁

�=1

(�� (���−1) − �� (�
� )) + � 2�

|� |︁

�=1

∥� �∇�� (���−1)∥
2

≤2��
|� |︁

�=1

∥� �∇�� (�� )∥��
�−1︁

�=1

∥��∇�� (���−1)∥ + �
2
�

|� |︁

�=1

∥� �∇�� (���−1)∥
2

≤2� 2� ( |� |2 − |� |)�2
����

2
3 + �

2
� |� |�2

����
2
3

(11)

Thus, from Eq. 9 to Eq. 11, we can get

∥��+1 − �∗∥ ≤ (1 − ��� )∥�� − �∗∥2 +
2�� |� |�1�2

�
+ � 2� |� |2�2

����
2
3 (12)

Finally, following Lemma 4 in [25], the convergence rate of Algorithm 1 is at the same rate of � ( 1√
�
) as the

convergence rate on the entire dataset [64]. Therefore, theoretically, the selected coreset can converge with the
same number of epochs as training on the full data. In this way, since coreset has a much smaller size than the
full data, the eiciency can be much improved.

6 GoodCore+: Group-based Acceleration

As discussed above, we can observe that in Section 5.1, even with the most eicient imputation-in-the-loop
strategy, � .� ., one tuple in each iteration, the time complexity is � (�ℎ�), where � is the size of the coreset, ℎ is
the sample size, and � is the cardinality of the entire dataset. Therefore, obviously, the eiciency is dominated by
�, which is still low when � is large, and thus it is necessary to further accelerate this process.
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Key observation. Recap that in Figure 4, we can observe that given a tuple � in the coreset, the tuples in the
origin full train set � represented by � are likely to be closer to each other than other tuples not represented by � .
Based on this observation, we propose to irst group the full train set, and then compute the coreset based on the
groups. This can achieve much acceleration because the number of groups is much smaller than �.

At the following, we will theoretically and empirically show that the group-based solution can accelerate the
coreset selection process without sacriicing the efectiveness much.

6.1 Solution Overview

One of the core parts of coreset computation is to compute the tuple-tuple distance, � .� ., �� � . For the group-based
solution, we just need to consider the relationship between tuples and these pre-computed groups, namely tuple-
group distance, rather than the large amount of tuple-tuple distances. As we will discuss below, the computation
of tuple-group distance does not need to iterate all tuples in the group, and thus the overall eiciency can be
much improved. At a high level, the overall process of group-based GoodCore solution with imputation in the
loop is shown in Algorithm 4.

To be speciic, as shown in Algorithm 4 Line 2, we irst group � using the eicient local sensitive hash (LSH)
approach, where each group ��, � ∈ [1,� ] includes the indexes of tuples in � . In this way, every pair of tuples
in the same group is close to each other in the feature distance. Afterwards, the major diference between
group-based GoodCore and original GoodCore lies in the 3rd loop. Instead of selecting a coreset to represent
all tuples in the train set, group-based GoodCore selects a coreset to represent all groups. As these groups can
well capture the train set distribution, the selected coreset contains enough information to approximate the full
gradient of the entire train set.
To this end, recap that the typical coreset selection algorithm relies the tuple-tuple distances to approximate

the full gradient, while for group-based GoodCore, we just need to consider the tuple-group distances, � .� .,
�� ( � )� = max

�∈��

�� ( � )�, �� ( � )� = ∥x� − x� ( � ) ∥, � ( �) ∈ [1, �], which denotes the maximum feature distance between

the tuple � � in the coreset and all tuples in �� . As tuples in �� are close to each other, �� ( � )� can represent the
relationship between � � and tuples in �� to a large extent. We will theoretically show that using this maximum
distance can still derive a bounded GA error. However, since computing �� ( � )� needs to iterate the tuples in �� ,
which is time-consuming, we inally estimate an upper bound �̂ �� to compute the coreset score (as shown in
Line 11), which still leads to a well-performed coreset.

6.2 Group-based GA Error Bound

In this section, following the equations in previous sections, we deduce the GA error bound for our group-based
solution. If we group � to {�1,�2, ...�� }, considering Equation 7, we can rewrite the total sum of � feature
distances (� .� ., min� � ∈��

∥x� − x� ( � ) ∥) to� summations as follows:

E[�] =
| IW |︁

�=1

�� (
�︁

�=1

min
� � ∈��

∥x� − x� ( � ) ∥) =
| IW |︁

�=1

�� (
�︁

�=1

︁

�∈��

min
� � ∈��

∥x� − x� ( � ) ∥) (13)

Afterwards, each summation is the sum of� feature distances, as shown in Equation 14, the sum of each group
can be bounded by the maximum distance (max�∈��

min� � ∈��
�� ( � )�) multiplying the group size, but the bound is

expensive to compute because of iterating � . To address this, we further apply the max-min inequality [16] to
simplify the computations.
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Algorithm 4: GoodCore+ (imputation-in-the-loop by humans)

Input: Incomplete train data � , coreset size � , sample size ℎ, batch size �.

Output: A coreset � ⊆ � , weightW = {� � },|� | = |W| = � .
1 � = ∅;
2 Group � into groups G = {�1,�2, ...,�� };
3 while |� | < � do

4 /*1st loop*/

5 Sample ℎ tuples as ������� ⊆ � \�
6 for each tuple � ∈ ������� do
7 /*2nd loop*/

8 �̂ = � ∪ {�};
9 for each group �� ∈ G do

10 /*3rd loop*/

11 E[�̂]+= E[min
� � ∈�̂ �̂ �� × |�� |], where �̂ �� is the estimated upper bound of

12 �� ( � )� = max
�∈��

�� ( � )�, �� ( � )� = ∥x� − x� ( � ) ∥, � ( �) ∈ [1, �];

13 E[� |�] = E[�] − E[�̂];
14 �∗ = argmax� ∈�������

E[� |�] ;
15 if I[�∗] = 1 then

16 ��� + +;
17 if ��� = � then

18 Ask the human to impute the incomplete tuples;

19 ��� = 0;

20 for � = 1 to |� | do
21 for � = 1 to n do

22 if � � = argmin� � ′ ∈� max
� ∈�

∥∇�� (� ) − ∇�� ( � ′ ) (� )∥ then
23 � � += 1;

24 return �,W;

| IW |︁

�=1

�� (
�︁

�=1

︁

�∈��

min
� � ∈��

�� ( � )�) ≤
| IW |︁

�=1

�� (
�︁

�=1

|�� |max
�∈��

min
� � ∈��

�� ( � )�)

≤
| IW |︁

�=1

�� (
�︁

�=1

|�� | min
� � ∈��

max
�∈��

�� ( � )�)

=

| IW |︁

�=1

�� (
�︁

�=1

|�� | min
� � ∈��

�� ( � )�)

(14)

Therefore, we can iterate over smaller group � to compute the maximum feature distance (� .� ., �� ( � )� =

max�∈��
�� ( � )�, � ∈ [1, |�� |]) between each � � ∈ �� and tuples in each group�� . Then, similar to assigning tuples

of the full train set to the tuple of the coreset in previous sections, we can assign the group�� to the tuple with
the minumum distance, � .� ., min� � ∈��

�� ( � )� . To enable eicient coreset selection, given � and these groups G, we
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should precompute all the maximum feature distances {�� ( � )� | � ∈ [1, �], � ∈ [1,� ]}. In this way, we can directly
get the value of �� ( � )� .

Similar to Sec 4.2, directly computing the probability and getting the expectation is extremely expensive, and
thus we still can convert the expectation computation over the possible worlds associated with all groups to the
sum of expectation of each group, as follows:

| IW |︁

�=1

�� (
�︁

�=1

|�� | min
� � ∈��

�� ( � )�) = �1 ( |�1 | min
� � ∈�1

�� ( � )1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

+ |�2 | min
� � ∈�1

�� ( � )2 + · · · + |�� | min
� � ∈�1

�� ( � )�)

+ �2 ( |�1 | min
� � ∈�2

�� ( � )1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

+ |�2 | min
� � ∈�2

�� ( � )2 + · · · + |�� | min
� � ∈�2

�� ( � )�) + · · ·

+ � | IW | ( |�1 | min
� � ∈� |IW |

�� ( � )1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

+ |�2 | min
� � ∈� |IW |

�� ( � )2 + · · · + |�� | min
� � ∈� |IW |

�� ( � )�) =
�︁

�=1

|�� | × E[min
� � ∈�̂

�� ( � )�] .

(15)

6.3 Technical Details of GoodCore+

6.3.1 Grouping. As discussed in Algorithm 4 Line 2, we need to group the entire train set as a pre-processing
step. To achieve this eiciently, we adopt locality sensitive hashing (LSH) [10] to assign similar tuples to the same
group, with a time complexity linear with |� |. Note that � contains some tuples with missing values, an ideal
way is to irst impute these tuples precisely and then group, but we do not know the ground truth in advance.
Therefore, we just apply a typical algorithm � .� ., MICE [68] to impute these missing values, and then conduct the
grouping. Although the imputation results may not be accurate enough, it does not inluence much because we
just need closer tuples to be included in the same group, and these missing cells do not have a large impact on
determining whether two tuples are close. Finally, tuples with the same hash code are considered highly similar
and grouped together.
6.3.2 Computing the expected maximum distance. In this part, we focus on computing Equation 15, where the
key part is the expected maximum distance, � .� ., E[min� � ∈�̂ �� ( � )�]. To be speciic, we expand E[min� � ∈�̂ �� ( � )�] =
�1 min� � ∈�̂ �� ( � )� [1] + �2 min� � ∈�̂ �� ( � )� [2] + ... + ����� (� ) min� � ∈�̂ �� ( � )� [���� (�)], where ���� (�) denotes the
number of possible world of �� ∪ �̂ , �� (� ∈ [1, ���� (�)]) denotes the probability of the �−th possible world and
�� ( � )� [�] denotes the maximum distance corresponding to the �−th possible world (each possible world does not
contain missing values). Therefore, to compute the expected maximum distance E[min� � ∈�̂ �� ( � )�], we should
know how to compute �� ( � )� [�], � .� ., the maximum feature distance between a tuple � � and a group �� within a
possible world.
Estimating an upper bound for each possible world. For ease of representation, we just use � �� to represent
�� ( � )� [�], indicating the maximum feature distance of a possible world. Recap that the reason why we do not
directly compute the �� ( � )� is that iterating �� to compute the maximum distance is expensive. To solve this,
we propose to leverage the quantization technique to estimate an upper bound �̂ �� of � �� , and then use �̂ �� to
compute the coreset score that still very likely leads to a bounded GA error.
Basic idea.At a high level, if we consider each tuple individually, it is time-consuming as discussed above. However,
if we take all tuples in a group as a whole, we cannot distinguish these tuples from each other and the maximum
distance is impossible to estimate. Therefore, we propose a more reined method that partitions the�-dimensional
feature space into� low-dimensional subspaces, and then quantize each subspace separately. The quantization is
conducted by applying �-means algorithm [36] over the vectors in each subspace, where � clusters are generated.
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In this way, a short code will represent a feature vector, where the �-th element corresponds to the quantization
index (� .� ., cluster ID) of the �-th subspace, and thus the short codes of two vectors can be used to eiciently
estimate their Euclidean distance. In our scenario, we use the short codes to eiciently estimate an upper bound.
To be speciic, we also split x� of � � into� subvectors, each of which is represented as x�� . If we can respectively

compute the maximum distance (denoted by ���� ) between the �-th subvector and vectors in the �-th subspace of

�� , � ∈ [1, �], and sum them up, we can derive an upper bound between � � and �� , � .� ., � �� ≤ ∑�
�=1 �

�
�� .

Computing �̂ �� . As discussed before, directly computing ���� is time-consuming, so we leverage these clusters in

each subspace to represent all the vectors in the �-th subspace.
Speciically, we use {� 11 , � 21 , ..., ��1 } to represent the cluster centers in the irst subspace. Hence, we can build a

matrix��1 to store the feature distances (denoted by��1 [�] [�]) between every two cluster centers, in total�
matrices are built. In this way, we can quantize each �� (x� ) ∈ T to a short code �� , where �

�
� , � ∈ [1, �] denotes

the �-th element, indicating that the ��� -th center has the shortest distance with x�� among all clusters of the �-th

subspace. Then, the feature distance between �� and � � can then be approximated by
∑�
�=1��� [��� ] [��� ].

Given � � and�� , we approximate ���� by irst quantizing x� and ∀x ∈ �� to short codes. Based on these matrices,
for the �th subspace, we calculate the maximum distance between the code corresponding to � � and codes of
tuples in�� , i.e., �̂ ��

�
= max � ∈ ����� [��� ] [��� ] as the approximation. Then, we approximate the upper limit by

summing up the� distances �̂ �� =

∑�
�=1 �̂

�
�� . Although �̂

�
�� may slightly underestimate ���� due to the quantization

bias, the summation �̂ �� always overestimates � �� since each �̂��� is close to ���� , and thus the GA error can be

always bounded.

Reducing the number of possible worlds. Recap that E[min� � ∈�̂ �̂ ��] =
∑���� (� )
�=1 �� min� � ∈�̂ �̂ �� [�]. Hence,

since each group contains multiple tuples, possibly multiple missing values, it is expensive to enumerate ���� (�)
possible worlds and to get the expectation. To address this, we can reduce the number (�) of possible worlds of
each tuple, and just keep several top possible worlds, say � , with the highest probabilities as discussed before.

Next, suppose that there are � + 1 tuples (� tuples in �� and one tuple in �̂) with missing values, and thus there

exist ��+1 possible worlds for �� ∪ �̂ . To achieve further acceleration, we can just select top-�� (�.�., 3) possible
worlds and normalize them to compute the expectation. Similarly, the above framework is easy to generalize to
the scenario of one batch per iteration, where the only diference is that in the coreset, we have a small batch � of
tuples with missing values rather than just one, indicating that the number of possible worlds that should be
considered increases.

Furthermore, we can continue to reduce the number of possible world considering the following entropy-based
method. Considering a missing cell value with 3 possible values to be imputed, if the probability distribution
predicted by an imputation algorithm is (0.8, 0.1, 0.1), � .� ., with a low entropy, it is certain enough to directly
impute the value corresponding to the probability 0.8 rather than considering the possible worlds of this value.
Formally, we use � (� ) = −∑��

�=1 � (�� ) log � (�� ) to denote the entropy [70] of a cell value � , where �� denotes
the number of possible values of � , and � (� ) ∈ [0, log�� ]. Therefore, we can set a threshold (�.�., 10% log�� )
that if � (� ) ≤ 10% log�� , we directly impute the values. In this way, the number of possible world can be further
reduced.
Time complexity analysis. For the quantization step, we can sample a small subset to compute the clusters in
each subspace, and thus the time complexity of this part can be ignored. Then the matrices can be computed in
� (��2) and the short codes of � can be computed in � (���). As discussed above, the largest distance between
corresponding codes of � � and codes of tuples in �� can be computed by �̂��� = max

�∈��

��� [��� ] [��� ] in the �-th

subspace. As ��� only takes from � diferent values {1, 2, . . . , �}, we can precompute max
�∈��

��� [�] [��� ], � ∈ [1, �] for

each �� , which takes � (��2). In this way, we can compute each �̂ �� =

∑�
�=1 �̂

�
�� in � (�), and considering that
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Table 1. Statistics of datasets

Dataset |� | � # Incomp. Tuples Task

Nursery 10960 9 3218 Multi-Class.

HR 18287 12 5475 Binary Class.

Adult 32842 14 10752 Binary Class.

Credit 131,000 11 76813 Binary Class.

BikeShare 13300 15 4821 Regression

Air 437,200 18 128,372 Regression

IMDB 1,000,000 40 331,189 Multi-Class.

IMDB-Large 4,000,000 40 1,312,908 Multi-Class.

� , �� and � are all small constants, all the upper bounds �̂ �� , � ∈ [1, �], � ∈ [1,� ] can be computed in � (��� ),
which is much faster than � (��2) that enumerates every tuple and tuples in each group to compute the upper
bounds, because� ≪ � and� ≪ �. Then, considering the three-loop framework, the overall time complexity is
� (�ℎ� ), which is much faster than the � (�ℎ�) because� ≪ �.
Convergence analysis. Considering the proof in Section 5.3, obviously, given a dataset, �� ( � )� can be bounded

(suppose that �� ( � )� ≤ �0). Then we have E[min� � ∈�̂ �� ( � )�] =

∑���� (� )
�=1 �� min� � ∈�̂ � �� [�] ≤ ∑���� (� )

�=1 �� ∗ �0 =

�0, and thus E[�] =

∑�
�=1 |�� | × E[min� � ∈�̂ �� ( � )�] ≤ � ∗ �0 = �1. And we also have ���� ∈� ∥

∑�
�=1 ∇�� (� ) −

∑ |� |
�=1� �∇�� ( � ) (� )∥ ≤

�∑

�=1
min
� � ∈�

∥∇�� (� ) − ∇�� ( � ) (� )∥ ≤
�∑

�=1
min
� � ∈�

�� � ≤ �1. Then we can still apply Cauchy-Schwarz

inequlity [74] to justify the convergence of the group-based method following the proof in Section 5.3.

7 Experiment

In this section, we suiciently compare our proposed methods with multiple baselines on real datasets to
demonstrate our efectiveness and eiciency.

7.1 Experimental Setings

Dataset. We evaluate on 6 real-world datasets that are often used in the ield of data imputation [40, 48, 52, 54],
as shown in Table 1, where� denotes the number of attributes.
(1) Nursery [2] is a multi-classiication task, which predicts łthe level of recommendation for whether a child goes

to schoolž. There are ive diferent levels, � .� ., {not_recom, priority, recommend, spec_prior, very_recom}. (2)
HR [20] is a binary classiication task of łpredicting whether an employee would change the jobž. (3) Adult [3] is a
binary classiication task that predicts łif the annual revenue of a people is over 50000 dollarsž. (4) Credit [4] is a
binary classiication task that predicts łwhether the loan will be deferred based on a person’s economic situationž.
(5) BikeShare [5] is a regression task that predicts łthe number of bike sharing in a given timež. (6) Air [6] is a
regression task that predicts łthe air quality at a certain timež. (7) IMDB [50] refers to a dataset that predicts the rating
(1-10) of movies, which contains the basic information of movies, �.�., movie_id, title, production_year.
(8) IMDB-Large [50] is the large vision of IMDB, which contains 4,000,000 records with the same attributes.

For datasets (1)-(3) and (7)-(8), we follow existing works [41, 77, 78] to manually inject missing values until the
rate of missing tuples is 30%, and we will vary the percentage of incomplete tuples in Section 7.8. Datasets (4)-(6)
already contain missing values. For all datasets, we randomly split them for 80%/10%/10% as train/validation/test
sets.
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Evaluation metrics. We mainly evaluate the efectiveness and eiciency of GoodCore and baselines. For
efectiveness, we use the prediction accuracy for the classiication task and use the mean square error (��� =

∑�
�=1 (��−�̂� )

�
, where � denotes the size of test set) for the regression task.

For eiciency, we focus on the machine cost (� .� ., the runtime of machine) as well as the human cost (the
number of tuples imputed by human for human-involved methods). For datasets (1)-(3) and (7)-(8), we have
the ground truth of missing tuples, so we use them to simulate the human imputation. For datasets (4)-(6), we
leverage the expert to impute missing values in the coreset by looking at the top-5 values recommended by the
automatic method as a reference. Note that we only involve humans when it is afordable. For baselines that
require humans to impute a lot of missing tuples (� .� ., Complete and C(H(�)) as below), we will not apply them
on datasets (4)-(6).
Baselines. We compare GoodCore and GoodCore + with a variety of baselines.
(1) Origin refers to just training on � .
(2) ActiveClean [48] is an iterative data cleaning framework, which estimates the impact of tuples and prioritizes
cleaning the tuples that much afect the model performance. In each iteration, it can ask the human to clean a
sample subset of tuples. We set the sample size to 50, same as the paper.
(3) BoostClean [49] is an automatic data cleaning method that iteratively selects a cleaning method from several
pre-deined algorithms, applies to the train dataset and updates the model. We use MICE [68], MISSForest [73],
GAIN [78] as pre-deined algorithms.
(4) Best-Auto uses MICE [68], MISSForest [73], GAIN [78] to respectively impute the train set and selects the
one that achieves the highest accuracy on the validation set.
(5) Complete is an ideal case that trains on the ground truth, � .� ., �� . Note that only datasets (1)-(3) have the
ground truth to evaluate this baseline. Datasets (4)-(6) do not have the ground truth and it is too expensive to ask
the human to impute so many missing values.
(6) MixCore is a baseline that selects a coreset from all complete tuples, and then we randomly select some
incomplete tuples to impute. We set the number of incomplete tuples to be imputed equal to that of other baselines
for fair comparison. Finally we train with the tuples in the coreset plus the imputed ones.
(7) C(H(�)) irst involves human to impute the dataset � and then selects a coreset. Similar to Complete, only
datasets (1)-(3) can be evaluated on it because they have the ground truth. The coreset selection solution is the
algorithm in [58], which is a greedy algorithm by modifying Algorithm 1 without considering the possible worlds.
(8) C(A(�)) irst uses automatic data imputation methods to impute the dataset � , and then selects a coreset
using the same method of baseline (7).
(9) H(C(�)) directly selects a coreset based on � and then asks human to impute the incomplete tuples of the
coreset.
(10) A(C(�)) also directly selects a coreset from � , it then uses MICE [68] to impute the incomplete tuples in
the coreset.
Our solutions. We compare GoodCore and its variants.
(11) G(�,⟲H) uses GoodCore to select the coreset and iteratively asks human to impute incomplete tuples (one
tuple per human iteration) during the coreset selection process.
(12) G(�,⟲A) is similar to G(�,⟲H), but the automatic MICE method is used.
(13) G+ (�,⟲H) uses group-based method to accelerate GoodCore, which selects the coreset and iteratively asks
human to impute incomplete tuples (one tuple per human iteration) during the coreset selection process.
(14) G+ (�,⟲A) is similar to G+ (�,⟲H), but the automatic MICE method is used.

Besides, since the coreset of H(G(�)) (or A(G(�))) is too expensive to compute due to the large number of
possible worlds, we do not directly compare with it. Instead, we will limit the number of possible worlds of each
tuple to 3 as discussed in Section 5.2 and evaluate in Section 7.5.
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(g) IMDB
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(h) IMDB-Large
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Fig. 8. Efectiveness of diferent methods.

Hyper-parameter setting.We use SVM and linear regression as the default downstream model for classiication
and regression tasks, respectively. We vary the downstream models in Section 7.8. For model training, we use SGD
and k-inverse decay scheduling, � .� ., �� = �0/(1 + ��) (�0 and � are hyper-parameters to be tuned independently
for diferent methods). The sample size ℎ is set to 200 as default and we vary the size in Section 7.8. The number
of training epochs is set as 20. We also impute the test data using the same method that is applied to the train
data before testing.

7.2 Overall Evaluation

In this part, we compare GoodCore solutions with baselines. We use � =
�
|� | to denote the proportion of coreset

to the entire train set. We set � = 0.005 for datasets (1)-(4), � = 0.001 for datasets (5) and � = 0.0005 for larger
datasets (6)-(8). We will further conduct evaluation by varying the coreset size in Section 7.4.

7.2.1 Evaluation of model accuracy. The results are provided in Figure 8. To summarize, the result could be gen-
erally ranked as G(�,⟲H)/C(H(�))/Complete > G(�,⟲A)/BoostClean/Best − Auto > C(A(�)) > MixCore

> ActiveClean > H(C(�))/A(C(�)) > Origin. Next, we explain the results.
In general, on all datasets, our method G(�,⟲H), Complete and C(H(�)) perform the best. Complete and

C(H(�)) achieve a high accuracy because they ask the human to impute missing values accurately, but incur a
high human cost. For example, Complete and C(H(�)) achieve accuracy of 71.9% and 71.7% on Adult. G(�,⟲H)
is competitive with them because it selects a good coreset that can well represent the unknown ground truth
via gradient approximation. In addition, we can observe that G(�,⟲H) performs better than G(�,⟲A) because
human imputation is more accurate than automatic methods. For example, on Adult, G(�,⟲H) has an accuracy
of 71.7%, while G(�,⟲A) and others are below 68%. G(�,⟲A), BoostClean and Best-Auto have competitive
performance on accuracy. BoostClean and Best-Auto can have a not bad performance because they impute
all tuples and train on the entire dataset, but they cannot achieve eicient training (see 7.2.2). But we can train
on the much smaller coreset generated by G(�,⟲A) with a good accuracy, because GoodCore considers the
possible repairs to derive the coreset that can approximate the full gradient of the entire dataset. Given the same
number of tuples to be imputed by human,G(�,⟲H) also outperforms ActiveClean because we have theoretical
guarantees on the gradient approximation. For other baselines, H(C(�)) and A(C(�)) do not perform well
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Fig. 9. Eficiency of diferent methods. Note that only machine cost (i.e., runtime of machine) is considered.

Table 2. Human cost of diferent methods

Dataset G+ (�,⟲H) G(�,⟲H) H(C(�)) C(H(�))
Nursery 35 37 22 3278

HR 48 44 32 5475

Adult 60 63 81 10752

Credit 57 52 67 -

BikeShare 35 38 25 -

Air 100 98 102 -

IMDB 215 220 230 331189

IMDB-Large 520 511 530 1312908

because they select the coreset from an incomplete dataset. C(A(�)) cannot achieve a good performance because
the selected coreset can not well represent the complete entire dataset, as it does not consider possible repairs
as our method. MixCore does not perform well (�.�., 65.2% on Adult) because G(�,⟲H) and G(�,⟲A) select a
better coreset considering the full data. For Origin, on Adult, the model has an accuracy of 61.3% because of the
incomplete tuples.
7.2.2 Evaluation of the eficiency. We evaluate the eiciency of all methods, including the machine cost and
human cost.
Machine cost. Machine cost is shown in Figure 9. The results could be ranked as H(C(�))/A(C(�))/G(�,⟲H

)/G(�,⟲A)/C(H(�))/MixCore < C(A(�)) < Complete < Origin < ActiveClean <

BoostClean/Best − Auto. We can observe that the irst 5 methods in the ranking have low machine cost, mainly
because they train based on the selected coreset and do not need iterative training. G(�,⟲H) and G(�,⟲A) are
slightly slower because they need to iterate several possible repairs during the process of coreset selection. But
G(�,⟲H) is still more eicient than Origin, Complete, BoostClean and Best-Auto by more than one order
of magnitude, because they need to train on the entire training data. Moreover, ActiveClean and BoostClean

are not eicient either because they incorporate multiple training times, so as to estimate the gradient while data
imputation. Best-Auto is slow because training multiple imputation models takes time.
Human cost. In terms of the human cost, C(H(�)), H(C(�)), G(�,⟲H) and ActiveClean involve human.
As shown in Table 2, C(H(�)) is very expensive because it asks the human to impute all missing tuples. For
example, on datset Adult, 10752 tuples have to be imputed. We do not compare Credit , BikeShare and Air
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Fig. 10. Efectiveness of � vs �+.

for C(H(�)) because they do not have the ground truth. But H(C(�)) and G(�,⟲H) are cost-efective because
human just needs to impute missing tuples in the much smaller coreset. For example, they only cost 81 and 63
tuples on dataset Adult respectively. ActiveClean asks the human to iteratively impute the data. Given the same
number of tuples to impute, our method can achieve much higher accuracy. We will evaluate it in details in next
subsection.
Summary. Based on the results, we have the following conclusions. (1) Our proposed methods G(�,⟲H) and
G(�,⟲A) can achieve high model accuracy because the selected coreset can well represent the underlying
ground truth by gradient approximation considering possible repairs. Meanwhile, they are practical because
of the low machine cost. (2) Compared with C(H(�)) that involves human to impute the entire dataset � , the
human cost of G(�,⟲H) is much lower, as observed in Table 2, e.g., 37 vs. 3278 on the Nursery dataset. Thus,
we can choose G(�,⟲H) when we want to achieve high model accuracy and aford a certain human cost. (3)
If we neither care very much about the accuracy nor consider to incur human cost, the much more eicient
G(�,⟲A) is a good choice.

7.3 Evalution of GoodCore+

In this part, we evaluate the eicacy of GoodCore+.

7.3.1 Evaluation of model accuracy. The results are provided in Figure 10. We can found that the accuracy of
GoodCore+ and GoodCore are roughly the same on all datasets. For example, on dataset IMDB-Large, G+ (�,⟲H

)and G(�,⟲H) achieve accuracy of 74.7% and 74.9% and they difer from each other by 0.2%. This is because
both of them select a good coreset because of a bounded GA error. In addition, we can observe that G+ (�,⟲H)
performs better than G+ (�,⟲A) because human imputation is more accurate than automatic methods. For
example, on IMDB-Large, G+ (�,⟲H) has an accuracy of 74.7%, higher than that of G(�,⟲A).
7.3.2 Evaluation of the eficiency. We evaluate the eiciency of GoodCore+ and GoodCore, including the machine
cost and human cost.
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Fig. 11. Eficiency of � vs �+. Note that only machine cost (i.e., runtime of machine) is considered.

Machine cost. Machine cost is shown in Figure 11. GoodCore+ is more eicient than GoodCore. For example, on
IMDB-Large, G+ (�,⟲H) spends about 12min, which is 4.8× faster than G(�,⟲H). That is because G+ (�,⟲H)
have the lower time complexity than G(�,⟲H), which is discussed in Section 6.3.2.
Human cost. In terms of the human cost, as shown in Table 2, G+ (�,⟲H) and G(�,⟲H) are cost-efective
because humans just need to impute missing tuples in a much smaller coreset. For example, they only cost 520
and 511 tuples on dataset IMDB-Large respectively.
Summary. Based on the results, we have the following conclusions. (1) Although we group tuples over the entire
train set, our proposed methods G+ (�,⟲H) and G+ (�,⟲A) still achieve high accuracy because the gradient
approximation error can still be bounded. (2) The eiciency is much improved compared with GoodCore because
we just need to iterate these groups rather than the entire train set within the 3-loop coreset selection process. (3)
The human cost is competitive with G(�,⟲H) because the group-based solution has low impact on the number
of tuples to be imputed by humans.

7.4 Coreset Size Selection of GoodCore

Recap that GoodCore needs the user-speciied coreset size as input. Thus, we discuss how to select an appropriate
coreset size. We adopt a simple yet efective solution that starts from a coreset with a small size, train over it and
evaluate via a validation set, enlarge the coreset and iteratively train until the performance does not improve
much. To be speciic, initially, we begin with � = 10−4, and enlarge the coreset by 2 times iteratively. If the
performance on validation set varies no more than 0.5% within three successive iterations, we will stop. Figure 12
shows the performance on dataset HR , Adult and BikeShare when varying the coreset size. We can see that
the performance irst improves rapidly, then remains stable just after several iterations. For example, on dataset
Adult, when � = 5× 10−3, the accuracy has improved to 72.85% on the validation set. Empirically, an ideal coreset
size is between � = 10−3 to 10−2.
Summary. The results show that coreset size is not diicult to determine. If the user is willing to specify a coreset
size like in Section 7.2 based on the empirical inding, we can directly compute a coreset without training. If she
cannot, we can also get a good coreset with just several training iterations over small coresets, which is also
eicient.
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Compare with ActiveClean. Figure 12 also reports an interesting comparison with ActiveClean. Speciically,
in ActiveClean, we use the coreset size � as the budget, i.e., number of tuples to be imputed by human in each
active cleaning iteration. We can observe that at the beginning, when the coreset size is very small, ActiveClean
is better because it trains with the entire dataset including the imputed tuples, while we train the model using
only few tuples in the coreset. However, as with the increase of the coreset size, we can see that G(�,⟲H)
outperforms ActiveClean. This is because ActiveClean uses a heuristic method to estimate the impact of tuples
to the overall gradient, which is not theoretically bounded (e.g., with gradient bounds like Coreset) and thus not
accurate enough. For G(�,⟲H), it can achieve high accuracy with a proper coreset size, which is not large.

7.5 Batch Algorithm of GoodCore and GoodCore+

In Section 7.2 and Section 7.3, G(�,⟲H) and G+ (�,⟲H) outperform other baselines on accuracy, but require
many human iterations. In this part, we evaluate the batch algorithm of GoodCore and GoodCore+ by varying
the batch size �, � .� ., Algorithm 3 to reduce the number of iterations. Intuitively, the algorithm is G(�,⟲H)
when � = 1. Then we increase � until a single batch with a size � can contain all incomplete tuples in the coreset
with size � , which is in fact the algorithm H(G(�)). Due to the large number of possible worlds, we adopt the
heuristic method in Section 5.2 to set � = 3 when � > 1 for GoodCore and we set � = 3, �� = 3 for GoodCore +

according to Section 6.3.2.
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Table 3. The number of possible worlds on diferent datasets

Method Nursery HR Adult

H(G(�)) 10201 10201 10202

A(G(�)) 10201 10201 10202

G(�,⟲H) 103 103 104

G(�,⟲A) 103 103 104
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Fig. 18. Varying Hyperparameters in LSH anduantization-based Method.

In Figure 15, the �-axis denotes the batch size and the �-axis denotes the test performance on dataset Adult and
IMDB-Large. We can see that when � is small (� .� ., � ≤ 5), the performance does not signiicantly decrease (�.�.,
on IMDB-Large, the accuracy decreases from 71.5% to 70.9% with G(�,⟲H)). However, when � keeps increasing,
the performance slightly decreases. Thus, GoodCore and GoodCore + are not very sensitive to the batch size �
and we can reduce the number of human iterations without sacriicing much model performance.

In this part, we also vary the number of possible worlds by varying � , which is the number of possibles world
per tuple. The larger � , the larger number of possible worlds we have. The results are shown in Figures 16 and 17.
In terms of the accuracy, we can see that with � increasing (ixing � = 10), the accuracy increases irst and then
remains stable soon, but the time keeps increasing because more possible worlds indicate more computation.
Hence, we do not need a large � .

When it comes to the number of possible worlds, we would like to clarify that we do not compare withH(G(�))
and A(G(�)) because the number of possible worlds of � is very large, which is infeasible to compute. We show
the number in Table 3, where we also report the numbers of possible worlds of G(�,⟲H) and G(�,⟲A) in each
iteration, which are practical to compute.

7.6 Ablation Studies of GoodCore+

Hyperparamaters for grouping.

We use LSH to efectively group the entire dataset and test the impact of diferent numbers of hyperplanes,
which is an important parameter in LSH. As shown in Figure 18 (a), as the number increases, more groups are
generated and the tuples within each group become closer, resulting in an increase in initial accuracy. Afterwards,
the accuracy remains stable because the tuples in each cluster are similar enough to approximate the gradient.
Therefore, based on experience, using 64 hyperplanes is the most suitable, as more groups will reduce eiciency.
Hyperparamaters in quantization-based method. In Section 6.3.2, we use quantization-based method to
estimate the upper bound �̂ �� of � �� . Recap that GoodCore+ needs the user-speciied cluster centers size �, which
is important for computing the maximum feature distances. To choose a proper �, we adopt a simple yet efective
solution that selects diferent � and obtain diferent coresets. Then we train over these coresets and evaluate
via a validation set to get diferent results. Speciically, we select � from 32 to 512 for each dataset. Figure 18 (b)
shows the performance on dataset HR and IMDB-Large when varying the cluster centers size �. We can see that
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Fig. 22. Loss of GoodCore.

as � increases, the accuracy of the dataset also gradually increases, because when � increases, the upper bound
�̂ �� is closer to � �� , which can help us to select a good coreset.

We also tested the performance of diferent feature segmentation methods (corresponding to diferent �).
In Figure 18 (c)-(d), the initial � = 12 indicates that in each subspace, the length of all sub-vectors is 1. As �
decreases, the accuracy irst improves because each sub-vector becomes longer, containing more information
when adding these �̂��� , resulting in more accurate boundaries. But if each sub-vector is too long, which means that

each vector is quantized into a very short code, the accuracy will decrease because in this case, the quantization
based method does not have enough information to give accurate distance estimates. Based on experience, when
M is around 3, it is always a good choice.
Varying the entropy threshold. In this part, we start to use the entropy to further eliminate the number
of possible world by imputing the missing cells with low entropy in advance, as discussed in Section 6.3.1.
Speciically, we test the impact of diferent entropy thresholds. As shown in Figure 19 and Figure 20, when the
threshold is less than 20% (� .� ., we directly impute the cell if its corresponding entropy is no larger than 20%
log�� ), the accuracy almost remains unchanged, while the eiciency is improved by almost 30%. However, when
the threshold exceeds 20%, the accuracy begins to decrease because in this situation, directly imputing a value is
not accurate enough. In short, setting an appropriate threshold (�.�., 20%) is helpful to improve the eiciency
without sacriicing the accuracy.

7.7 Convergence Evaluation

In Section 5.3, we have shown the convergence rate of GoodCore theoretically. In this part, we test the convergence
of training over the coreset (G(�,⟲H)) and entire data (Complete) empirically. Figure 21 shows the test accuracy
of two methods with the number of training iterations increasing. We can observe that on both datasets, training
on the coreset converges much faster than training on the full data.
For example, on dataset Adult, it takes ∼40 iterations for GoodCore to converge, which is 180× faster than

Complete. This is because GoodCore has the same convergence rate with training over the entire dataset as
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discussed in the theoretical result of Section 5.3, but the entire dataset (�.�., Adult) is 200× (similar to 180×)
larger than the coreset (� = 0.005). That is, GoodCore converges with the same number of epochs as training
on the entire dataset. Since the size of coreset is much smaller, GoodCore is more eicient. Also, we can achieve
competitive accuracy as training on full data by approximating the full gradient with a theoretical bound.

Furthermore, we report the loss change to relect the relation between actual convergence rate and theoretical
results. In Figure 22, on dataset HR , the initial loss is 8.4. According to the theoretical convergence rate� ( 1√

�
) (this

� denotes the �-th epoch), the loss should decrease to around 3.8 at the end of 5-th epoch (≈ 3200-th iteration).
Actually, the actual loss decreases to 3.25 at that time, which is close to the theoretical value.

We also test the convergence of GoodCore+, as shown in Figure 23 and 24. The results validate that the
group-based method can also converge fast.

7.8 Sensitivity Analysis

Varying the sample size. In this part, we vary the sample size ℎ and evaluate the performance. The experimental
results are shown in Figure 25. We vary the sample size ℎ from 22 to 210. We can see that when ℎ is too small, the
performance is low. The reason is that GoodCore cannot precisely estimate the utilities of tuples when ℎ is small.
When the sample size increases, we can see that the performance improves rapidly and inally becomes stable,
which indicates that GoodCore is not much sensitive to the sample size when ℎ is not too small.
Varying the downstream models. Recap that GoodCore can be used on diferent convex models. Thus, in
this part, we apply GoodCore on diferent convex models and evaluate the performance. We evaluate logistic
regression and SVM for classiication tasks. For regression tasks, we evaluate linear regression, ridge regression
and SVM regression. We can see that in Figure 26 (a) and (b), on dataset Adult,G(�,⟲H) achieved 71.7% accuracy
for SVM, better than on logistic regression (69.4%). Although diferent downstream models may have diferent
performance, GoodCore can improve the model performance for the speciic downstream model. In order to
show that GoodCore can be used for other types of models like neural networks, we compare with Multilayer
Perceptron (MLP, fully connected networks of 2 hidden layers with 256 nodes for each layer), although GoodCore

does not hold theoretical guarantee for this non-convex model. As shown in Figure 26, we can see that MLP
achieves almost the same performance as the ground truth. This is because the coreset selected by GoodCore can
also represent the full dataset. However, in Figure 26(c), on a large dataset Air (with metric MSE, the lower the
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better), neural network based methods (we also implement RNN, 2 hidden layers with 128 nodes for each layer)
can have a better accuracy but the coreset cannot perfectly achieve the same performance. This may because this
large dataset has more informative things to learn, and it is hard for the coreset-based solution to well represent
the dataset without the theoretical guarantee.
Varying the percentage of incomplete tuples. In this part, we vary the rate of missing tuples and evaluate the
performance, as shown in Figure 13. Note that the rate denotes the percentage of incomplete tuples rather than
the cell values. Even if a tuple just has one missing attribute, it is regarded as incomplete. We vary the percentage
from 20% to 100%. We can observe that the performance does not decrease much with the percentage increasing
from 20% to 50%, which indicates that GoodCore is not very sensitive to the percentage of incomplete tuples in
this range. After that, the accuracy decreases because there are more missing tuples.
Besides, we also vary the rate of missing cell values in Figure 14. In this scenario, for example, 50% missing

values of a dataset indicates more number of missing cell values than the scenario of 50% missing tuples. Hence,
we can see that the accuracy decreases more quickly than Figure 13.

8 Related Work

Task-agnostic incomplete data imputation. Data imputation has been widely studied for years. Existing
methods can be divided into two categories: statistic-based methods and learning-based methods. The former one
always uses the statistic information [33, 55] (like mean, median or mode) to impute the missing values. Also,
some methods compute the similarity of the incomplete tuples to the complete tuples and use the most similar
one to impute the missing values [9, 39, 75]. Recently, to improve the imputation accuracy, many learning-based
methods focus on how to use ML to learn the data distribution (�.�., MissForest imputation [73], MICE [68],
IIM [79]), and then use the trained model to predict the missing values. Besides traditional ML models, some
deep learning models are also used for data imputation (�.�., autoencoder [35, 56, 63], GANs [72, 78]).
Coreset selection. A previous work [21] has studied how to select a well-performed coreset over incomplete
tuples. Another work [23] studies to use group-based method to accelerate the coreset selection process without
incomplete data. The extension to the previous studies in this work is ive-fold. First, we propose a new framework
that incorporates the group-based strategy into the coreset selection process with incomplete data. Second, we
theoretically analyze that incorporating the group-based strategy still leads to a bounded GA error, considering
the possible worlds produced by the incomplete data. Third, given these groups, the number of possible worlds
further increases, more strategies are proposed to reduce the number of possible worlds to improve the eiciency.
Fourth, we theoretically and empirically prove that incorporating the group-based method still guarantees
the convergence. Fifth, two large datasets and ten new experiments are added to demonstrate the eicacy of
our proposed methods. In addition, Huang et al. [38] studied how to compute and continuously update the
coreset while training, but it is rather time-consuming because of the training process. To solve this problem,
works [17, 18] selected the coreset without training in advance, but they can only be customized to particular
model types respectively. Some works [7, 24, 69, 71] study how to select a subset of data only considering the data
distribution rather than the model performance. Gradient-based methods [46, 58, 60, 76] focused on selecting the
coreset to approximate the full gradient without training in advance for multiple model types, which is regarded
as an optimization problem as discussed in Section 2.2. Moreover, Deng et al. [29] choose an optimal coreset
under label uncertainty, particularly when encountering a deep learning training set that contains mislabeled
data. Coreset selection can also be formulated as a bilevel optimization problem [15, 43, 45], where the outer
objective involves choosing a subset and the inner objective entails optimizing model parameters on the subset,
the ultimate goal is to select a subset such that the model empirical risk on this subset approximates that of the
model trained on the complete dataset. However it is rather time-consuming because it requires solving an inner
optimization problem during each outer iteration.
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In short, none of the above methods except [21] consider coreset selection over incomplete data.
Data cleaning for ML. Recently, there have been several works that clean the data to optimize the ML model.
In contrast to the above discussion about task-agnostic incomplete data imputation, data cleaning for ML is
task-aware, which triggers new technical challenges. SampleClean [47] focuses on cleaning selected samples,
so as to answer SQL aggregate queries more eiciently, but it is not for any model. CPClean [40] proposes
certain prediction to impute missing data for optimizing ML models. Diferent from us, it is customized to nearest
neighbor classiiers rather than convex models solved by the gradient descent algorithm. BoostClean [49] regards
data cleaning as a boosting problem that iteratively selects from a predeined set of cleaning algorithms, so as to
continuously maximize the accuracy of a validation set with training iteratively. MisDetect [27] and IDE [30]
focus on detecting mislabeled data instances using early loss signals and inluence functions. Closer to our work is
ActiveClean [48], which progressively cleans the data tuples that are likely to much inluence the model measured
by the gradients. Diferent from us, given a budget � , we can select the coreset without training, but ActiveClean
needs to train iteratively and label a set of validation dataset. We empirically show that our method outperforms
ActiveClean on model accuracy and eiciency in Section 7.
Data preparation for ML. Recent studies have concentrated on enhancing data preparation within the machine
learning ield. LakeBench [28] provides a benchmark for discovering joinable and unionable tables, while Lake-
Compass [19] ofers a comprehensive system for data search and improves ML model performance. Conversely,
STAIR [31] presents a technique for summarizing outliers through interpretable rules, which improves the
management of dataset anomalies. Together, these works advance the efectiveness and clarity of data preparation
for machine learning.

9 Conclusion

In this paper, we propose the GoodCore framework to select a good coreset over the incomplete data, which
achieves data-efective and data-eicient ML. We formulate it as an expected optimal coreset selection problem,
which is NP-hard. Then we propose a greedy algorithm with an approximation ratio. We also propose to
involve imputation-in-the-loop strategies into GoodCore to improve the eiciency. Furthermore, a group-based
acceleration method is incorporated to further accelerate the coreset selection process. We conduct experiments
on real-world datasets to verify the efectiveness and eiciency of GoodCore and GoodCore+.
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