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Fig. 1: We present ncNet, a Transformer-based sequence-to-sequence model that translates natural language queries to visualizations.
It works in two modes. (A) It takes a natural language query N1 and a dataset D as input, translates them (N1,D) into a visualization
rendered in Vega-Lite. (B) Besides a natural language query N2 and a dataset D, the user can optionally select a chart template C;
ncNet will translate the given input (N2,C,D) into a target visualization.

Abstract— Supporting the translation from natural language (NL) query to visualization (NL2VIS) can simplify the creation of data
visualizations because if successful, anyone can generate visualizations by their natural language from the tabular data. The state-
of-the-art NL2VIS approaches (e.g., NL4DV and FlowSense) are based on semantic parsers and heuristic algorithms, which are not
end-to-end and are not designed for supporting (possibly) complex data transformations. Deep neural network powered neural machine
translation models have made great strides in many machine translation tasks, which suggests that they might be viable for NL2VIS as
well. In this paper, we present ncNet, a Transformer-based sequence-to-sequence model for supporting NL2VIS, with several novel
visualization-aware optimizations, including using attention-forcing to optimize the learning process, and visualization-aware rendering
to produce better visualization results. To enhance the capability of machine to comprehend natural language queries, ncNet is also
designed to take an optional chart template (e.g., a pie chart or a scatter plot) as an additional input, where the chart template will be
served as a constraint to limit what could be visualized. We conducted both quantitative evaluation and user study, showing that ncNet
achieves good accuracy in the nvBench benchmark and is easy-to-use.

Index Terms—Natural language interface; data visualization; neural machine translation; chart template;

1 INTRODUCTION

Natural language interface is a promising interaction paradigm for sim-
plifying the creation of visualizations [32, 43, 52]. If successful, even
novices can generate visualizations simply like a Google search. Not
surprisingly, both commercial vendors (e.g., Tableau’s Ask Data [46],
Power BI [2], ThoughtSpot [3], and Amazon’s QuickSight [1]) and aca-
demic researchers [7,13,20,33,34,40,42,45,49,50,57] have investigated
to support the translation from NL queries to visualizations (NL2VIS).
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NL2VIS needs both natural language understanding that uses ma-
chines to comprehend natural language queries, and translation algo-
rithms to generate targeted visualization using a visualization language.
Natural language understanding is considered an AI-hard problem [56],
with many intrinsic difficulties such as ambiguity and underspecifica-
tion. Many tools from the NLP community, especially based on statisti-
cal phrase-based translation [26] and neural machine translation [4,10],
have been used to tackle NL2VIS.

The state-of-the-art NL2VIS methods (for example, NL4DV [40] and
FlowSense [57]) are statistical phrase-based translation, which treats
natural language understanding and machine translation as two steps.
They first employ NLP toolkits (for example, NLTK [5], Stanford
CoreNLP [37], and NER [12]) to parse an NL query and produce a
variety of linguistic annotations (for example, parts of speech, named
entities, etc), based on which they then devise algorithms to generate
target visualizations. They are good choices when there are not many
training datasets to train deep learning models.

We present ncNet1, an end-to-end solution using a Transformer-
based sequence-to-sequence (seq2seq) model, which translates an NL
query to a visualization. It adopts self-attention to generate a rich repre-

1The code is available at https://github.com/Thanksyy/ncNet
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sentation (high dimensional vectors) of the input, ncNet enables smart
visualization inference (e.g., guessing the missing column, selecting a
chart type, etc).

Besides making smarter inferences, a system can obtain more infor-
mation (or “hint”) from the user, by either obtaining a one-shot hint
from the user or iteratively requiring more information (a.k.a. conver-
sational systems) [6]. The hint can be of various formats, such as NL
queries, tables, chart templates, with one main criterion to be easy-to-
use. We propose to use chart templates as additional hints, where a
user can specify the output to be a pie chart or a scatter plot with a
simple click. In practice, chart templates have been widely used in all
commercial products, including Tableau, Excel, Google Sheets, and
so on. Due to the flexibility of the seq2seq model, we just treat the
selected chart template C as another sequence, together with the NL
query N and the dataset D as the input X.

Contributions. In this work, we make several contributions, including:

• proposing ncNet, a Transformer-based [53] seq2seq model for
supporting NL2VIS;

• presenting a novel visualization-grammar, namely Vega-Zero,
with the main purpose to simplify the NL2VIS translation using
neural machine translation techniques. Moreover, transforming it
to other visualization languages are straightforward;

• enhancing ncNet by allowing the user to select a chart template,
which will be used to improve the translation accuracy;

• devising two optimization techniques: attention forcing for in-
corporating pre-defined domain knowledge and visualization-
aware translation for better final visualization generation; and

• demonstrating that ncNet can well support NL2VIS with several
use cases, as well as conducting a quantitative study.

2 RELATED WORK

2.1 Natural Language Interface for Data Visualization
The idea of using NL as a way to create visualizations was explored
around two decades ago [6], where the system interacts with the user
through dialogs. During each interaction, the system tries to clarify
a small part of the user specification. For example, the system asks:
“At what organizational level?”, the user answers: “At the department
level”, and so on. At that time, the system can only map simple user
inputs to pre-defined commands.

Afterwards, semantic parsers (e.g., NLTK [5], NER [12], and Stan-
ford CoreNLP [37]), which can automatically add additional layers of
semantic information (e.g., parts of speech, named entities, coreference,
etc) to NL, have been widely adopted in the research of NL2VIS. Recent
studies, such as NL4DV [40] and FlowSense [57], all employ semantic
parsers, which are considered as the state of the art.

2.2 Natural Language Processing with Deep Learning
Closer to this work is ADVISor [27] that uses BERT [10] to generate
the embeddings of both the NL query and the table headers, which
are then used by an “Aggregation” network to select an aggregation
type and a “Data” network to decide used attribute and predicates –
these SQL fragments will determine an SQL query. Then, a rule-based
“Visualization” module will decide which visualization to generate.
Compared with ADVISor, ncNet supports more complex data transfor-
mation types such as relational join, GroupBY, OrderBY, Or predicate
in SQLWHERE clauses. Another difference is that the neural networks
of ADVISor are trained using (NL, SQL) pairs, while ncNet is trained
using (NL, VIS) pairs and outputs Vega-Zero queries.

In fact, the main obstacle of using deep learning for NL2VIS is not
the shortage of deep learning models or techniques. Instead, it is the
lack of benchmark datasets that these models can be trained on, because
deep learning models are known to be data hungry [14]. Fortunately,
a recent work releases the first public benchmark for NL2VIS, namely
nvBench [35], which can be used to try deep learning for NL2VIS.
nvBench consists of 25,750 NL queries and the corresponding visu-
alizations, i.e., 25,750 (NL, VIS) pairs, over ∼780 tables from 105
domains (e.g., sports, customers). We will discuss more details of
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Fig. 2: Sample seq2seq tasks. (A) Translation from English to French.
(B) Translation from NL queries to visualization specifications.

nvBench in Section 6.2. Another recent work [48] collected 893 NL
queries over three datasets. However, its number is not sufficient to
train typical deep learning models.

An alternative solution is NL2SQL + automatic data visualization,
which is a good choice when the entire pipeline is one-shot. However,
in practice, it is always iterative. That is, if the target visualization
needs to be refined, the user needs to verify/refine both NL2SQL and
check the result of automatic data visualization. Note that, checking
whether a table is good enough is hard, even for a small table with
hundreds/thousands of tuples. In this case, using end-to-end NL2VIS
has an advantage that the user only sticks to one task, which is more
user-friendly.

3 DESIGN REQUIREMENTS

There are three main goals when devising solutions for NL2VIS, along
the same line of other NL2VIS tools e.g., NL4DV [40].

(1) Easy-to-use. We want to allow novices to create visualizations sim-
ply like a Google-search. That is, even users without data visualization
background can easily generate visualizations.

(2) End-to-end. Traditional semantic parser based translation systems
typically consist of many small sub-components that are tuned sep-
arately. In contrast, we want to deliver a complete NL2VIS solution
without the need of any additional steps. Besides the well-known ben-
efits of end-to-end solutions such as increased efficiency, cost cutting
and ease of learning, one particular benefit for a seq2seq model is
that it is easy to maintain and upgrade. For example, upgrading a
seq2seq model from using long short-term memory (LSTM) [19] to
Transformer [53] only requires to change a few lines of code.

(3) Language-agnostic. The main benefit to be language-agnostic is
that we just need to train one seq2seq model for NL2VIS, but can
support multiple target visualization languages. The practical need
for this is evident, because the users might use various visualization
languages constrained by different applications, such as Vega-Lite, D3,
ggplot2, and so forth.

4 BACKGROUND AND PROBLEM FORMULATION

4.1 Sequence-to-Sequence Models
A sequence-to-sequence (seq2seq) model [51] consists of two parts,
an encoder and a decoder, where each part can be implemented by
different neural networks. The task of an encoder is to understand
the input sequence, and generate a smaller representation h (i.e., a
high-dimensional vector) to represent the input. The task of a decoder
is to generate a sequence of output by taking h as input. The net-
work needs to be trained with a lot of training data, in the form of
(Input sequence, Output sequence) pairs.

Due to the flexibility of seq2seqmodels that allow the input and out-
put to have different formats, they have a wide spectrum of applications
including language translation [17], image captioning [38], conversa-
tional models and text summarization [39], and NL to SQL [23].

Let’s first walk through a typical translation task – lan-
guage translation from English to French (Figure 2(A)). The
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{
  "data": {"url": "US_States.csv"},
  "mark": "bar",
  "transform": [{
   "window": [{ "op": "rank", "as": "rank" }],
    "sort": [{
      "field": "number", "order": "descending"}]
    }, {
    "filter": {
      "and": [
        {"field": "datum.rank", "lte": 5},
        {"field": "cases", "equal": "confirmed"},
        {"field": "date", "equal": "2021-03-08"}
      ]
    }}
  ],
  "encoding": {
    "x": {"field": "states", "type": "nominal"},
    "y": {"field": "number", "type": "quantitative", 
          "aggregate": "sum"}
   }
}

Create a bar chart showing the top 5 states with the most conrmed cases until 2021-03-08

mark      bar
data      US_States.csv
encoding  x states y aggregate sum number 
transform filter date = "2021-03-08" and cases = "confirmed"  
          group x sort y desc topk 5

(a) A sample table US_States of COVID-19. (b) A bar chart.

(c) A natural language query.

(d) A Vega-Zero specication of the bar chart. 
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(e) A Vega-Lite specication of the bar chart. 
Fig. 3: Sample input, output, and the corresponding Vega-Lite query.

task is to train an English2French network with a lot of
(English sentence, French sentence) pairs, such that it learns
to translate from an English sentence (e.g., “natural language to visual-
ization is important”) to a French sentence (e.g., “le langage naturel à
la visualisation est important”).

Similar to the translation from English to French, the transla-
tion from NL2VIS is to train a NL2VIS network with a lot of
(NL query, VIS query) pairs, such that it learns to translate from
a natural language query (e.g., “Create a bar chart showing the top 5
. . .” in Figure 2(B)) to a visualization specification (e.g., “mark bar
encoding x states y aggregate . . .”).

4.2 Datasets and Natural Language Query

Dataset. Let D be the data source that the user wants to generate
visualizations on. To be simple, we consider D as a tabular dataset,
which can be obtained from a JSON file, a CSV file, or a relational
table from a database.

For example, Figure 3(a) shows a sample data source about the
COVID-19 statistical data in the United States.

Natural Language Query. Let N be an NL query that specifies what a
user wants to visualize on the dataset D.

For example, Figure 3(c) is an NL query over the dataset in Fig-
ure 3(a), which corresponds to a histogram depicted in Figure 3(b).

4.3 Vega-Zero

As we have discussed in Section 4.1, the task of a seq2seq model
is to translate an NL sequence to a visualization sequence, for which
we need to decide which visualization grammar to use for the output
visualization sequence.

Intuitively, we can use Vega-Lite [44]. However, it is hard to train a
seq2seq model to generate a hierarchical output (e.g., in JSON format
such as Vega-Lite). In contrast, it is much easier to train a seq2seq
model to generate a sequence output.

To this end, we present a visualization grammar by simplifying
Vega-Lite, with the main purpose to flatten a hierarchical Vega-Lite
specification to a sequence-based specification. That is, Vega-Lite is
more user friendly, but Vega-Zero is more seq2seq model friendly.

Vega-Zero. Vega-Zero keeps most of the keywords of the Vega-Lite
about the mapping between visual encoding channels and (transformed)
data variables. It flattens a JSON object into a sequence of keywords
by removing structure-aware symbols such as brackets, colons, and
quotation marks. Formally, a unit specification in Vega-Zero is a four-
tuple (similar to Vega-Lite but with each tuple being a sequence) as:

unit = (mark, data, encoding, transform)

Naturally, as a simplification of Vega-Lite: mark denotes the chart
type, including bar, line, point (for scatter chart), arc (for pie chart);
data specifies the source data; encoding contains x/y-axis, aggregate
function, and color based on which column; and transform defines
some data transformation functions: filter, bin, group, sort, and top-k.

For example, Figures 3(d) and (e) show the Vega-Zero grammar
and the Vega-Lite grammar for the target histogram in Figure 3(b),
respectively. It shows that Vega-Zero flattens the keywords of the
Vega-Lite hierarchical JSON specification into a sequence.

Vega-Zero is Language-Agnostic. Although Vega-Zero is a simplifi-
cation of Vega-Lite, we still consider it as language-agnostic, or an
intermediate visualization language, because we remove all language-
specific settings such as which color to use (e.g., black or blue), what is
the default width of a bar, and so on.

Converting a Vega-Zero query into the format of other visualiza-
tion languages (e.g., Vega-Lite and ggplot2) is straightforward (see
Section 5.5).

4.4 Chart Templates
Note that the reason to allow a user to select a chart template is to
alleviate the ambiguity and underspecification intrinsic to an NL query.
Besides being user friendly, it can also help novices or data scientists
that are not in the visualization community to easily specify the type of
desired visualization.

Chart Templates. Figure 4 showcases seven chart templates. Each
chart template constraints the chart type, the data types of the x/y-axis,
and optional sorting parameters.

For example, if a user selects a “Bar Chart” and then sets the sorting
parameter as “by measure attributes in descending order”, it means that
the user wants to visualize a bar chart and display the bars from high to
low, e.g., Figure 3(b).

Essentially, the chart template is used as a constraint to reduce the
search space of possible outputs. More specifically, a chart template is
selected to explicitly constrain the mark and sort part of a Vega-Zero.

For example, Figure 5(a) shows an “empty” Vega-Zero template
without any constraints w.r.t. the type of chart, the dataset to use, how
to encode, and how to transform. Assume that a bar chart is selected
together with a source CSV file “US States.csv” and sorting parameter
as “by measure attributes in descending order”, then they can be used
to fill the mark as bar, data as “US States.csv”, and sort as y desc.

4.5 Problem Statement

Input. Let N be a user provided NL query, C an optional chart template,
and D a source dataset. For deep learning, each input needs to be
pre-processed before being fed into a deep learning model, typically in
the form of vectors [14]. Let X1:n = embed(N,C,D) be a sequence of n
vectors after pre-processing the three inputs N,C and D (see Section 5.2
“Input Embedding” for more details).

Output. Let Y1:m be the target visualization w.r.t. the given input,
which is a sequence of m vectors.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 25,2023 at 02:27:08 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 2022220

Bar Chart Line Chart Grouping Line Scatter Chart Grouping ScatterPie Chart

- 1 Dimension
- 1 Measure

- 1 or 2 Dimensions
- 1 Measure

- 1 Dimension
- 1 Measure

- 1 Date
- 0 or 1 Dimension
- 1 Measure

- 1 Date
- 0 or 1 Dimension
- 1 or more Measures

- 1 or more Dimensions
- 2 Measures

- 0 Dimension
- 2 Measures

By Dimension

Sorting Options

By Measure

Axis:

In Descending
In Ascending

Type:

None

None

Stacked Bar

Fig. 4: The chart templates that users can select from.

mark      [T]
data      [D]
encoding  x [X] y aggregate [AggFunction][Y] color [Z]
transform filter [F] group [G] bin [B] sort [S] topk [K]

(a) An empty chart template in Vega-Zero

mark      bar
data      US_States.csv
encoding  x [X] y aggregate [AggFunction][Y] color [Z]
transform filter [F] group [G] bin [B] sort y desc topk [K]

(b)  A selected chart template in Vega-Zero

Fig. 5: Using a chart template as a constraint.

We will simply write X1:n as X and Y1:m as Y, when it is clear from
the context.

Problem. The problem of using a seq2seq model for NL2VIS is to
learn a function fθ () such that Y = fθ (X), where fθ is a deep neural
network parameterized by θ .

More specifically, a seq2seqmodel consists of two neural networks,
an encoder that understands the input sequence and create a hidden
representation h (i.e., a high-dimensional vector), and a decoder that
generates a target output from h. In a finer granularity, the problem of
learning fθ () is to learn two connected networks: the encoder network
h = encode(X), and the decoder network Y = decode(h).

5 NCNET

In this paper, we propose to use a Transformer-based seq2seq model
for NL2VIS, namely ncNet, where “n” stands for natural language, “c”
for chart template. and “Net” for neural networks.

5.1 Architecture
The architecture of ncNet is shown in Figure 6(a). ncNet adopts a
Transformer-based [53] encoder-decoder model that consists of an
encoder and a decoder, which are both stacks of self-attention blocks.
That is, an encoder (or decoder) is composed of multiple encoder (or
decoder) blocks, where an encoder block is depicted in Figure 6(c).

Why Transformer. In retrospect, recurrent neural network (RNN) [15]
has been widely used as encoder/decoder blocks. The key innovation
of Transformer [53] is that it can process the entire input sequence X1:n
of variable length n without exhibiting a recurrent structure as RNN
does, which allows Transformer-based encoder-decoder models to be
highly parallelizable. Moreover, this allows the encoder to compute a
better contextualized encoding (e.g., when processing a token xi, it can
attend on any input token before or after xi). In contrast, an RNN can
only process tokens sequentially, i.e., when processing a token xi, it can
only see the input tokens before xi. Due to the advantage of Transfomer
to process the input holistically, not sequentially, it can successfully
support a wide range of applications including NL2SQL, which suggests
that it may also be a good fit for NL2VIS in the current age. Moreover,
explainability on Transformers for neural machine translation has been
studied [25], which can help explain how it works to the users. Another
advantage is that we can further pre-train Transformers on a large set of
NL corpus such as Wikipedia such that it can obtain general knowledge
such as “MA” in “Cambridge, MA, USA” is a state, and then fine-tune
on NL2VIS benchmarks.

5.2 The Working Mechanism of ncNet
Next, let’s work through an example to understand how ncNet works.

Consider the three inputs: the NL query N, the selected chart C, and
the table D as shown in Figure 6(a).

Note that, if the chart template is not specified, we will use the
“empty” chart template (see Figure 5(a)) as the input sequence; other-
wise, the chart template is selected, we will use a a partially specified
Vega-Zero specification as the input sequence (e.g., see Figure 5(b)).

Input Tokenization. We have three types of inputs. Each one will be
converted into a sequence, and the three sequences will be concatenated.

1. N: The NL query is naturally a sequence of words, where each
word will be treated as a token. We add a special token �N� (or
�/N�) to denote the start (or end) of an NL sequence. For example,
the NL query will be tokenized as:

TN = �N� show me the trend of confirmed . . . in utah �/N�

2. C: Note that there are several tokens such as [X], [Y], [F], [G]
(see Figure 5) – these are called masked tokens. The main task
of ncNet is to fill these masked tokens. Moreover, we add a
special �C� (or �/C�) token to denote the start (or end) of a chart
sequence. For example, the selected line chart is tokenized as:

TC = �C� mark line encoding x [x] y aggregate . . . �/C�

3. D: For simplicity, we consider a single table, which consists of a
set of rows with columns. We linearize the D into a sequence of
tokens by concatenating the column names and scanning the table
content row by row. Similarly, we add a special �D� (or �/D�) to
denote the start (or end) of a table, the columns (or cell values)
tokens will be filled between special token �COL� (or �VAL�) and
�/COL� (or �/VAL�). For example, the table will be tokenized as:

TD = �D� table name �COL� . . . �/COL � �VAL� . . . �/VAL� �/D�

The above three tokenized sequences will be concatenated as one
sequence X = TN ⊕TC⊕TD, which is the input of the “Input Embedding”
model, shown in Figure 6(b).

Input Embedding. Each token xi in the input token sequence X will
be converted into a vector embedding xi as follows:

1. Token embedding: Each xi will be converted to a token embedding,
which produces a vector, denoted as xtokeni .

2. Type embedding: Each xi will also be converted to a type embed-
ding, which is responsible for distinguishing the type of token,
e.g., an NL token, a chart template token, or a data token. It also
produces a vector, denoted as xtypei .

3. Position embedding: Finally, we also compute for each xi a posi-
tional embedding, which hints the position of the token xi in the
sequence, denoted as xpositioni .

Finally, the input embedding of xi, denoted as xi, is the summation
of the above three embeddings as:

xi = xtokeni +xtypei +xpositioni = embed(xi)

After each token is processed as discussed above, it outputs X as
shown in Figure 6(b), i.e., X = embed(N,C,D). This X will serve as
the input to the encoder as shown in Figure 6(a).
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Fig. 6: The architecture of ncNet.

Discussion: Handling Large D. When D is small, we can tokenize the
entire D as a sequence as discussed above. However, when D is large,
due to the limitation of the length of the input vector of a Transformer
(e.g., up to 512 tokens), it is not allowed to incorporate all values of
D into the sequence. We propose to only add those values that are
very possibly mentioned by the user input NL query to the sequence.
To this end, we first measure the similarity between a text value in
the NL query N and values in D, which is achieved by string-based
similarity functions [8], either through handcrafted patterns, or by word
embeddings [22]. In this paper, we equip an efficient and effective
string similarity search algorithm [8] to extract those values in D that
are similar to the text values in the user input NL query N, which are
typically small enough to be fed to a Transformer.

After the encoder processes the complete input sequence X, it will
generate a contextualized encoded sequence h, as h = encode(X).

Output Sequence Generation. Next we describe how the decoder
can auto-regressively generate the output (i.e., the output tokens are
sequentially generated) and thus a mapping of an input sequence X to
an output sequence Y.

First, the input encoding h together with a special “start-of-sentence”
�SOS� vector, i.e., y0, is fed to the decoder. The decoder processes the
inputs h and y0 to compute the first target vector y1. The first target
vector y1 = “mark” is selected.

Next, the decoder now processes both y0 = �SOS� and y1 = “mark”
to compute the second target vector y2 (e.g., “line”).

The decoder will then process y0,y1 and y2, and so on, done in an
auto-regressive fashion, until a special �EOS� token is generated as a
termination condition.

By doing so, it generates an output sequence as Y = decode(h).

5.3 Training
ncNet is trained using an existing NL2VIS benchmark called nvBench,
which consists of the mapping from thousands of (N,D) pairs to visu-
alizations, such as (N1,D) and the bar chart in Figure 1. We insert the
chart template information C into (N,D) as (N,C,D) with two modes:
(1) empty chart template, as shown in Figure 5(a); and (2) selected chart
template, as shown in Figure 5(b). In both cases, they are uniformly
treated as partially completed visualization specifications with many
masked tokens, such as [X], [Y], [F], and [G], to be filled.

The training is to optimize a reconstruction loss – the cross-entropy
between the model output (i.e., the predicted visualization) and the
ground truth visualization provided by the benchmark.

5.4 Optimization
5.4.1 Attention Forcing
A major innovation of Transformer [53] is attention, which allows the
model to focus on the relevant parts of the input sequence as needed, and
thus highly improves the quality of machine translation systems. Next,
let’s first review the concept of attention, followed an optimization
technique, called attention forcing, to further improve the quality.

Let’s Pay “Attention”. Figure 6(c) shows a Transformer-based en-
coder block, where the “Multiple-Head Attention” module gives the
encoder greater power to estimate the relevance of one token to other
tokens. For simplicity, in the following, we only illustrate “One-Head
Attention” (i.e., one attention unit), and “Multiple-Head Attention” just
repeats the computation of one attention unit multiple times in parallel.
A sample attention matrix is shown in Figure 7(a), which shows the
encoder attention weights of pairs of tokens in the range [0,1] that
correspond to colors from light chartreuse to dark blue. A light color
(or a dark color) indicates that the corresponding two tokens are less
(or more) correlated.

Next we briefly discuss how an attention matrix is computed (see
Figure 6(c)). Recall the input X is a sequence of vectors, which forms
a matrix by packing these vectors. The Transformer will learn three
weight matrices: the query weight matrix W Q, the key weight matrix
W K and the value weight matrix W V. It then computes three matrices
as Q = X×W Q, i.e., a matrix that contains the query (vector represen-
tation of one word in the sequence); K = X×W K, i.e., a matrix with
all the keys (vector representations of all the words in the sequence);
and V = X×W V i.e., a matrix with all the values, which are again
the vector representations of all the words in the sequence, where “×”
means matrix multiplication. The three matrices, Q, K and V, will be
fed to the attention unit. The output attention matrix is computed as:

Attention(Q,K,V) = softmax
(Q×KT

√
dk

)×V,

where KT is the transpose of matrix K,
√

dk is to stabilize gradients
during training, and softmax normalizes the weights to sum to 1. Please
refer to the Transformer paper [53] for more details.

Attention Forcing. It can be observed from Figure 7(a) that there
is no need to have an attention value between [X] and cell values
recovered, confirmed, died, and utah, because these cell values should
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Fig. 7: Examples of attention forcing. Plotting attention scores for all tokens are cluttered, we sample some tokens for visualization.

not be encoded as the x-axis of a visualization. If we have such prior
knowledge, we can explicitly tell the attention unit about what should
not be attended, which is known as attention forcing [11].

More specifically, we explicitly encode the prior knowledge as a
forcing matrix E with boolean values 0 and 1, where 0 means do not
attend. In the case of NL2VIS, the values (i.e., [X]/[Y]/[Z]) of the
encoding part, grouping [G], binning [B], and sorting [S] should be
selected from the columns of the relational table D, while the values
(i.e., [F]) of the filter part can be filled by both the columns and cell
values of the D.

A sample forcing matrix is shown in Figure 7(b), which shows that
it does not attend the tokens between [X]/[Y]/[Z] and cell values.

Next, we discuss how to force the attention to be aware of the forcing
matrix E. Essentially, the forcing matrix E acts as an attention mask so
that some attention scores of the irrelevant tokens are set to zero. This
is achieved by an element-wise multiplication as below:

Attention(Q,K,V,E) = softmax
(Q×KT

√
dk

�E
)×V,

where “�” denotes Hadamard product.
The process of attention forcing is also depicted in Figure 6(c) to

help illustrate the difference with/without the forcing matrix E.
The computed attention matrix, after attention forcing, is shown in

Figure 7(c). Comparing with Figure 7(a), we can see that the attention
scores in red rectangles of Figure 7(c) are set to zero. In contrast, the
attention scores of ([X], date) , ([Y], number), ([Z], cases), ([F],
states), ([F], utah) become higher, which indicate that the model better
capture token correlation after attention forcing.

5.4.2 Visualization-aware Translation
In the decoding phase, the model may make false prediction due to
various reasons. We detail some reasons as follows. The first reason
is the inherent ambiguity of the NL query. The second reason is that
the NL2VIS model may work poorly in some situations. For example,
when it predicts the encoding parts, the tokens should be selected from
the column names of the table D instead of the cell values of the D.

To alleviate the above issues, we propose a simple yet effective
method, namely visualization-aware translation, that incorporates
visualization knowledge (i.e., rules of thumb for visualization) and chart
templates to validate the output tokens of the ncNet and correct those
incorrect tokens (Figure 6(d)). Our visualization-aware translation
method is a variant of the Beam Search [51], a well-known algorithm
for neural machine translation task. In a nutshell, the beam search
algorithm [47] maintains a set of k candidate partial outputs and their
cumulative probabilities at each step, and finally select k candidates
with highest cumulative probabilities.

The basic idea of visualization-aware translation is to maintain
the top-k possible tokens predicted by the ncNet at some specific
steps, and then we use visualization rules and the constraints of a
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date y aggregate none number
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recovered
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[Y]
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deaths
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Fig. 8: An example of visualization-aware translation. It shows how to
select the “best” token from top-3 candidates. The blue path is selected
by our algorithm, while the gray paths are ignored by the algorithm.
Tokens in specific steps are listed by the probability in descending order.
It selects the “most possible” token in specific steps (e.g., line for [T]).

selected chart template to select the “most possible” token from the
top-k candidates. More concretely, the specific steps are those steps
for predicting the empty parts of the Vega-Zero grammar (e.g., the
[T], [X] in Figure 5(a)). For steps of predicting the following types of
tokens, by default we maintain top-5 tokens given by the model, and
choose the “best” with the following heuristic rules:

1. For the [T]/[S] tokens: if a chart template is specified, we
use the parameters from the chart template as the target outputs;
otherwise, we take the top-1 candidate as the output token.

2. For the [X]/[Y]/[Z] tokens: we choose the candidate token t
with the highest probability under the condition that the t is a
column of the dataset D and the column type should suitable for
the chart type, e.g., two quantitative columns for scatter chart.

3. For the [G] (or [B]) tokens: for the group (or bin) key, we choose
the candidate token t with the highest probability and it must
satisfy: (i) the t is temporal/categorical (or temporal/quantitative)
types, and (ii) the t should not be the tokens from the [Z] part.

4. For the [K] token: we keep the candidate token t with the highest
probability under the condition that the t is a valid number.

For example, Figure 8 shows an example to demonstrate the working
mechanism of the visualization-aware translation algorithm. The
algorithm follows heuristic rules mentioned before to process output
tokens in those specific steps. For example, for the [T] token, since
the token “line” has the highest probability and is a right chart type
specified by the chart template, the algorithm keeps it as the target
output. For the [Y] token, it selects the rank-2 token “number” because
the rank-1 token “numbers” is not a column of the dataset D.
Remark: Visualization Recommendation. Although the above process
will output only one visualization, it is readily to be extended to provide
top-k visualizations, e.g., by ranking different branches in Figure 8,
which can be used for visualization recommendation.

We have empirically verified that using this optimization can increase
∼3% accuracy, which will be used by ncNet by default.
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Fig. 9: The statistics of the nvBench benchmark.

5.5 Language-aware Rendering
As shown in Figure 6(e), the Vega-Zero specification can be converted
to popular visualization languages (e.g., Vega-Lite, ggplot2) for ren-
dering the visualization result. The translation from a Vega-Zero speci-
fication to a targeted visualization language is hard-coded. Currently,
we write ∼240 and ∼333 lines Python3 code to support the translation
from Vega-Zero to Vega-Lite and ggplot2, respectively. The code is
available at https://github.com/Thanksyy/Vega-Zero.

6 IMPLEMENTATION

6.1 Implementation Details of ncNet
We implement the ncNet with PyTorch [41], with three Transformer-
based encoder blocks and three Transformer-based decoder blocks. For
the multi-head attention layer, we set the number of heads to 8. The
embedding dimension for word embedding, token types embedding
and position embedding are set to 256. We limit the input length to 512
tokens – inputs that exceed this limit are truncated.

We use the Adam optimizer [24] with a static learning rate (i.e.,
0.0005) instead of the one with warm-up and cool-down steps. We use
a learned positional encoding. We set the dropout rate as 0.1, for both
encoder and decoder. The batch size is set to 64. The size of the trained
model is about 40 MB.

6.2 NL2VIS Benchmark
For training and testing ncNet, we use a public benchmark for the
NL2VIS task, namely nvBench [30, 35].

NVBench Statistics. Figure 9 overviews the statistics of nvBench from
the data sources and (NL, VIS) perspectives. As shown in Figure 9(a),
nvBench has 153 databases along with 780 tables in total and covers
105 domains (e.g., sports, customers). The average number of column-
s/rows of the 780 tables is 5.26/1,309.65, and the maximum/minimum
number of columns (rows) is 48/2 (183,978/1). Among the columns,
68.78% of columns are categorical columns, 11.58% of columns are
temporal columns, and 19.64% of columns are quantitative columns.
Figure 9(a) also depicts the distributions of columns and rows, which
tells us that most of the tables have 2 to 9 columns.

Given 153 databases, as shown in Figure 9(b), nvBench contains
7,274 visualizations on seven types of charts. For each visualization,
nvBench provides one to several NL queries because different users
might provide different NL queries for the same visualization. In total,
nvBench consists of 25,750 (NL, VIS) pairs. nvBench further defines
the four-level complexities, i.e., easy, medium, hard, and extra hard, of
the visualizations based on the hardness of the visualization query (i.e.,
similar to the Vega-Zero). For example, a Vega-Zero with filter, bin and
aggregations may be categorized as a Hard visualization. The heatmap
in Figure 9(b) shows the distribution of visualizations in different chart
types and hardness of visualization queries.

Easy
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Extra Hard

All

Fig. 10: The distribution of training and test set. B (Bar Chart),
P (Pie Chart), L (Line Chart), S (Scatter Chart) SB (Stacked Bar Chart),
GL (Grouping Line Chart), GS (Grouping Scatter Chart).
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Fig. 11: Using ncNet in Jupyter Notebook.

6.3 Training ncNet
nvBench splits the 25,750 (NL, VIS) pairs into a training set with
20,598 pairs, a development set consisting of 1,162 pairs, and a test
set with 3,990 pairs. Based on the original training, development, and
test sets provided by nvBench, we further process them to satisfy our
requirement, as discussed below.

First, since nvBench contains some visualizations generated from
multiple tables with the join operations, we remove such cases so as
to focus on non-join cases in this evaluation. In average, the accuracy
join cases is lower than non-join cases for ∼ 3.6%.

Second, we have to inject the chart templates into the benchmark
to train ncNet for generating visualization result with NL query and
chart template as inputs, because nvBench only provides NL query and
the corresponding visualization. This step is straightforward: given
a (NL, VIS) pair, we assign this (NL, VIS) pair a chart template (e.g.,
Figure 5(b)) based on its chart type and sorting parameter. Hence, each
(NL, VIS) pair will result in two (NL, VIS) pairs, one with an empty
chart template, and the other with the desired chart template (e.g., a bar
chart with sorting y-axis in descending order).

Finally, we have training/test sets with 25,238/4,920 (NL, VIS) pairs.
More specifically, we show the distribution of training and testing
(NL, VIS) pairs in Figure 10. We can see that they have similar distribu-
tions on chart types and the hardness of visualization queries.

7 EVALUATION

7.1 Usage Scenarios
We first present two common usage scenarios to demonstrate how
developers (or lay users) can use ncNet.

ncNet in Jupyter Lab. Data science practitioners often perform in-
teractive data visualization in Jupyter Lab (or Jupyter Notebook). To
make ncNet easy-to-use to for this type of users, we have developed a
Python package to be used in the Jupyter Lab ecosystem.

Figure 11 is a screenshot that demonstrates how to create a de-
sired grouping line chart with an NL query and a chart template for
a COVID-19 dataset. First, the user imports the ncNet package and
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Fig. 12: User study.

creates an instance of ncNet by setting the dataset D variables (Fig-
ure 11-�). Next, the user can initialize an input interface for the NL
query N and the chart template C (Figure 11-�). Alternatively, the
user can also directly pass the N and C variables to the function
input interface(nl query, chart template) . Finally, ncNet will ren-

der the best inferred visualization relevant to N and C in Jupyter Lab
using Vega-Lite library (Figure 11-�).

ncNet as a Toolkit. In addition to using ncNet in an interactive
Python environment, we also regard ncNet as a Python toolkit for
the NL2VIS task. It means developers can build their visualization
systems or dashboards [28,29,31,36] via using ncNet package through
pre-defined APIs.

7.2 User Study
We conducted a user study on ncNetwith two goals: (1) whether ncNet
works well in real-world datasets with users from multiple domains?
and (2) collect qualitative feedback on ncNet’s design criterion.

Tasks. To achieve the above goals, we design the following tasks.
Task 1: Given a table and a target visualization, we asked the partici-
pants to express an NL query for creating such a visualization.
Task 2: We asked participants to provide their comments about ncNet.

Participants. We invited 4 experts (2 VISers, 1 NLPer, and 1 DBer)
and 2 non-experts (1 financial staff and 1 operational staff) to participate
in our user study. The four experts have expertise in data analysis/visu-
alization and have more than six years of experience in Python, SQL,
and Tableau. The latter two users are familiar with Excel and creating
simple visualizations (i.e., plotting two columns as a bar chart in Excel).

Procedures. We asked participants to vote for 5 databases with do-
mains they are familiar with out of 153 databases in nvBench. The 5
databases selected by majority voting were used in the user study. We
then taught participants to use ncNet in Jupyter Lab. The experts took
about 5 minutes to understand how to use ncNet, while the two non-
technical participants took about 20 minutes to understand the usage
of ncNet. Non-technical participants had longer learning time mainly
because they need to be familiar with the Jupyter Lab environment,
including inputting/rephrasing input (NL queries) and executing cell.
Third, we randomly sampled 10 visualizations for each database as the
targets. Totally, we have 50 target visualizations for the user study. For
task 1, we provided descriptions (i.e., what is expected) for each target
visualization to guide the participants to formulate their NL queries
(i.e., how). We recorded the interaction logs, including NL queries,
input records, and task situations, when the participants interacted with
ncNet. For task 2, we collected their comments about ncNet.

Results. Figure 12(a) samples 4 target visualizations with user-
provided NL queries. We also denote (using �) which NL queries can
successfully generate the target visualization using ncNet. Figure 12(b)
reports the average accuracy; we can see that the experts achieve better

results than non-experts. By rephrasing NL query several times, the
accuracy rate is also improved. We also analyze the interaction logs
from Task 1. Figure 12(c) shows the time for non-experts to perform
a NL2VIS task is about twice than experts. We report more details in
Figure 12(d). It depicts the composition of a round of user time, in
which thinking time and typing time account for almost half, and the
system response time is around 1 second.

The participants comment that that ncNet is easy-to-use and can
generate the target visualization in easily. Specifically, the two non-
technical users think that the NL2VIS tool is easier than Excel because it
only needs to express the intent of visualization using natural language
queries instead of conducting a series of operations in the Excel.

7.3 Quantitative Evaluation
We now present quantitative assessments of ncNet using the nvBench
testing dataset mentioned in Section 6.3. We use accuracy as the
evaluation metrics. To be conservative, the accuracy measures whether
the output Vega-Zero sequence exactly matches the ground truth Vega-
Zero sequence. We define the accuracy = M/N, where M is the number
of the output Vega-Zero sequences that are equivalent to the ground
truth Vega-Zero sequences, and N is the total number of testing cases.

We evaluate the following three cases on the same testing dataset:

(1) Neural Network-based Baseline: we adapt the state-of-the-art
NL2SQL model [18] for NL2VIS task (Figure 13(a)).

(2) ncNet without chart template (Figure 13(b)).
(3) ncNet with a selected chart template (Figure 13(c)).

Note that, we only consider the first visualization result (i.e., rank-1)
outputted by baseline model and ncNet. Figure 13 summarizes the
evaluation results. More concretely, the heatmap details the accuracy
under different visualization types and difficult levels of the NL query.
The bar charts colored in red report the average accuracy by chart types,
while the green bar charts show the average accuracy across different
hardness of NL queries. Next, we will elaborate the evaluation results.

ncNet: Overall Performance. Figures 13(b) and (c) summarize the
performance of ncNet without and with chart template, respectively.
The ncNet performs well on different hardness levels of visualization
queries (shown in the green bar chart) and works effectively on different
types of visualizations (the red bar chart). More specifically, as shown in
the heatmaps of Figures 13(b) and (c), we can see that ncNet achieves
100% accuracy on some cases (e.g., (S, Hard) in Figure 13(b) and (c)).
Overall, ncNet shows its effectiveness by achieving the accuracy of
77.8% and 79.6% on average for the cases without and with a chart
template, respectively.

ncNet: With/Without Chart Template. Next, we give a closer look
at the performance difference between two cases of ncNet with and
without chart template in Figure 13(b) and (c), respectively. In gen-
eral, it shows that the accuracy of nearly all cases is higher when an
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Fig. 13: Quantitative Evaluation. B (Bar Chart), P (Pie Chart), L (Line Chart), S (Scatter Chart), SB (Stacked Bar Chart), GL (Grouping Line Chart), GS (Grouping Scatter Chart).

additional chart template is specified, which can be observed from the
red and green bar charts in Figure 13(b) and (c) that the accuracy in
Figure 13(c) is higher than Figure 13(b). This is obvious especially for
those cases of bar, pie and scatter charts.

ncNet vs. Neural Network-based Baseline. The evaluation of the
neural network-based baseline is shown in Figure 13(a). The baseline
solution achieves an average 65.0% accuracy, while our approaches
outperform it by 12.8% and 14.6%, respectively. More concretely,
we can compare the performances across different solutions in the
heatmaps (Figure 13). It shows that ncNet is better than the neural
network-based baseline in almost all cases. The result is expected, be-
cause ncNet uses several optimization techniques specifically designed
for the task of NL2VIS.

Error Analysis. We conduct an error analysis on those failed cases.
There are four main causes of evaluation error of ncNet.
(1) Fail on predicting columns or transform parts. This is the main
cause of failure. For mispredicted columns, it is mainly because
the NL query mentions desired columns in an ambiguous or implicit
way. In some cases, it fails due to the “unperfect” table header (e.g.,
“StuId” vs. “Student ID”). Incorporating some pre-trained language
models (e.g., BERT [10]) or processing the table headers might help to
tackle this issue. The main reason of mispredicting transform parts
(e.g., filter) is mainly regard to problem of natural language understand.
That is how to successfully convert the intend into right logic opera-
tions. For example, as shown in Figure 12(a), the NL query mentions
“... candidates under the age of 45 ...”, it should construct the [F] as
“... filter Date of Birth > 07.01.1976 ...”. The above issues
could be alleviated by developing more advanced natural language
understanding models and designing smart strategies for jointly under-
standing the user intends incorporating database information and visual
analysis knowledge.
(2) Fail on predicting chart type and sorting parameters. This case
usually appears when ncNet does not take a chart template as an
additional input.
(3) True result in the rank-k output. Since our quantitative evaluation
only considers the rank-1 Vega-Zero returned by ncNet. However,
we observe that the ground truth Vega-Zero can be generated at the
rank-k (e.g., rank-4) result by ncNet, in some cases. Therefore, this
observation points out that the performance of NL2VIS can be further
improved by incorporating visualization recommendation techniques,
i.e., suggesting top-k visualization results relevant to the NL query.
(4) Vega-Zero unmatched but visualization result match. Some of pre-
dicted Vega-Zero sequences are unmatched with the ground truth Vega-
Zero sequences, but their visualization results are in fact equivalent.
For example, “mark bar encoding x cars y aggregate count
cars ...” equals “mark bar encoding x cars y aggregate
count cylinders ...” because they have the same aggregate re-
sults used for showing the number of cars in a bar chart.

8 LIMITATIONS AND FUTURE WORK

8.1 Limitations

(L1) Limited benchmarks. In retrospect, benchmarks have played a key
role in spawning the boom in different research communities, such as

ImageNet [9] for image processing, GLUE [55] and SuperGLUE [54]
for the NLP community, and TPC benchmarks [16] for the database com-
munity. However, large public benchmarks, such as VizNet [21] and
nvBench [35], that can be used for deep learning on data visualization
tasks are quite limited.

(L2) Supporting only one-shot NL queries. Different from applications
that only need one-shot queries, data analytics often needs to issue a se-
quence of (or iterative) queries. End-to-end approaches (e.g., NL2VIS)
have the advantage that the user only needs to check the visualization
and refine the NL query. In contrast, non end-to-end approaches might
require the user to be involved in different tasks, which is less user
friendly. Even though, however, our current NL2VIS model only trans-
lates one (possibly revised) NL to a visualization, instead of translating
a sequence of (or conversational) NL pieces into a visualization.

8.2 Future Work

(F1) The quest for more benchmarks. In response to limitation L1, a
promising future direction for pushing deep learning for data visual-
ization, is to contribute to new benchmarks that cover more diversified
tasks, such as conversational NL2VIS benchmarks, annotations for chart
to description mapping, annotation for similar charts, and so on.

(F2) Supporting conversational NL queries. To lift limitation L2, an
interesting direction is to extend ncNet to support conversational NL
queries. The good news is that there are text-to-SQL benchmarks such
as CoSQL [58]. Naturally, it is interesting to explore how to leverage
these benchmarks to extend and train ncNet such that it can support
conversational NL2VIS cases, which have lots of practical applications.

(F3) Chart2vec. Similar to word2vec that learned a universal embed-
ding of words based on the word associations from a large corpus of text,
an interesting future work is to learn a universal embedding of charts,
so as to enable other downstream applications (e.g., recommendations,
story telling, guideline generation, and so forth.)

9 CONCLUSION

We present ncNet, a research attempt using deep neural networks to
support NL2VIS. This approach is built upon the latest NLP models,
namely Transformer-based seq2seq models. We further propose to
use chart templates to help enhance the translation accuracy. We also
demonstrate the effectiveness of ncNet on a NL2VIS benchmark over
105 domains. We hope that our proposal ncNet, along with recent ad-
vances in NLP, can shed some light on NL2VIS and justify the potential
of deep neural networks for NL2VIS. However, the journey just starts
and a lot need to be done such as handling non-friendly column header
names (or even foo bar) and work for big data.
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